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Abstract

Software vulnerabilities that enable w&hown exploit techniques for committing computer crimespaexentdle, but

they continue to be present in releases. When Blackhats (i.e., malicious researchers) ttissevarinerabilitieshey
oftertimes release corresponding exploit software and malwdfevulnerabilitie® or discoveries of theth are not
preventedmitigated, or addressedustomer confidence could be reducéuaddressing the issusgftwaremakersmust
choose which mitigation alternatives will provide maximal impact and use vulnerability discovery mo@diébivg
techniques to support their deiois-making process. In the literature, applications of these techniques have used
traditional approaches to analysis and, despite the dearth of data, have not included information frorarekpertsot
include influential variables describing the softeaelease (SR) (e.g., code size and complexity characteristics) and
security assessment profile (SAP) (e.g., security team size or SRisequently, they have been limited to modeling
discoveries over time for SR and SAP scenarios of unique produtse results are not readily comparable without
making assumptions that equate all SR and SAP combinations under $hidyesearchakes an alternative approach,
applying Bayesian methods to modeling the vulnerabdiscovery phenomenon. Relevatdta vere obtained from
expert judgment (i.e., information elicited from security experts in structured workshops) and from public dafeases.
opensource framework, MCMCBayes, was developed to perform Bayesian model averaging (BMA). It combines
predctions of intervalgrouped discoveries by performanseighting results from six variants of the nbonmogeneous
Poisson process, two regression models, and two growtre models. Utilizing expert judgment als@nables
forecasing expected discoveriever time for arbitrary SR and SAP combinations, thelpingsoftwaremakergo better
understand the effects of influential variables they control on the phenomdrus.requires definingyariables that
describe arbitrary SR and SAP combinatioasaell asconstrucing VDM extensions that parametrically scale results
from a defined baseline SR and SAP to the arbitrary SR and SAP of interest. Scaling panaeretesimated using
elicited multivariatedata gathered with a novphiredcomparison apprad. MCMCBayes uses thmultivariatedata

with the BMA model for the baseline performpredictions for desired SR and SAP combinatiandto demonstrate

how multivariate VDM techniques could be usedheresearchs applicable to softwarmakers and pgons interested

in applications of expefiudgment elicitation othoseusing Bayesian analysis techniques wittenomena having nen

decreasing counts over time.
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24. IF Information flow

25. i.i.d. Independent and identically distributed
26. ISSAP Iterative software security assessment process
27. JAGS Just another Gibbs sampler

28. KL Kullback-Leibler

29. KLOC Kilo-lines of code

30. KM Knowledge management

31. LS Least squares

32. Max Maximum

33. MCE Monte Carlo error

34. MCMC Markov chain Monte Carlo

35. MH MetropolisHastings
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Standard deviation
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Glossary of Terms

Attack surface:e d@dthef sment iodnaliltyoalcces s(Hdwhréand lopnewser s and
2006)

Blackhats: Software security researchers having malicious intent

Cleansing: The act of removirggl corresponding symbol or debug information from code

Decompile: Converting assembly or portable code language (e.g., bytecode artifacts for virtual machines) back into
higher level programming languages (e.g., C or JAVA)

Disassembly: Converting a sofare binary from machine code form (i.e., object code, or raw bytes of the program) into
human readable assembly language

Dynamic access: Ability to control and monitor execution of software either on target or on similar virtual computing
devices

Dynamicanalysis: Software inspections that run either on target or on similar virtual computing devices and allow for
controlling and monitoring execution

Exploit: A software threat that takes advantage of an existing vulnerability to support malicious softwes

Fuzz testing:Functional boundary testing for security quality of software

Information security: fiPreservation of confidentiality, integrity, availability, authenticity, accountability,-non
repudiation, and reliability of informati@n(International Organization for Standardization 2009)

Malware: Malicious software that uses exploits and generally performs something undesirable to system orsiser asset
(e.g., computer viruses, computer worms, Trojan horses, ransomware, and adware)

Obfuscation: The act of transforming code to inhibit reverse engineering performance

Reverse engineering (RE): External inspection of a system (often without the aidin&lodesign information) with

the goal of attaining sufficient system design compreher{&od. Chikofsky and J. H. Cross 1990; 18 M. G.Rekoff

1985, 244252)to enable the security assessment

Security assessment: Artifact RE and security analysis activities directed to the evaluation of the security quality of a
software release (i.e., the inspection of artifacts to discover vulneiedjilit

Security assessment profile (SAP): Set of variables detailing the security inspection of a particular software release (e.g.
security assessment team size or skill); SAP is akin to using operational profile (OP) in the security assessment context
Security quality: iCharacteristics of a product or service that bear on its ability to satisfy stated or dv{pledden and

Daniels 2007, 3%9) security needs for all stakeholders

Securitysensitive: Indicates dependencies on one or more of the security tenets ; considered to be the attack surface for
malicious users

Software release (SR): Set of variables describing a particular software version (e.g., code size or complexity)

Static anyysis: Software inspections that manually review raw binary, assembly, and Hfegketanguage artifacts

when they are not runnin@all 1999, 216234)

Threat model s: rAi migned ehsoidg f ofrl aims oivre a soft war Howa@mponent be

and Lipner2006) hat uses the attackero6s perspective systemassegose any m
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Vulnerability: flnstance of a mistake in the specification, development, or configuration of software such that its
execution can violate the explicit or implicit security poBo§Ozment 2007, 4.1; Krsul 1998)

Vulnerability discovery modeling (VDM): Forecasts security fault discovery events over time and relies on patterns in
historical discoveries over tim@lhazmi and Malaiya 2008, 122)

Whitehats: Software security researchers having benevolent intent (e.g., security analysts performing assessments) or
third-party entities supporting threat mitigation.q., vendors providing security products or entities having vested

interests in managing security risk)
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Chapter 1. Introduction and Background

This chapter provides an introduction to the security problem of intéirest vulnerability discovery post
release) details the software security lifecyc(&SL) and when discoveries occur within, aimtroduces strategies

softwaremakers use for risk reduction.

1.1The security problem

The rise of electronic crime, the proliferation of networked computing devices amce#tensive customer
usage, as well as the increasing interaction of device software with various forms of sensitive customer information, pose

significantinformation securityrisks (underlined words are definedthe Glossary of Termdo both consumerge.g.,

financial losses incurred fromalwareand correspondingxploit techniques for aulnerability) and softwareanakers

alike (e.g., loss of revenue due to poor security qualitsfh Eeten and Bauer 2008:68). Because of the high cost of
quality! and other factors (e.g., compressetbase schedules or the emergence of new security risk categories),

vulnerabilities exist, and external researchers discover themrglestse when grforming security assessmensee

Sectionl.2.3.9. Public disclosures of postlease vulnerabilities increased significantly betweer6 3@ 2018 The
MITRE Corporation 2018a; National Institute of Standards and Technology 2018;088] IBM 2017)(e.g., se€igure

1-1), eroding the reputation of software vendors and reducing customer confidesmaiiity quality Addressing all of
these problems is crucial for companies that develop soéand computer hardwaf&@MD 2018; Apple 2018; ARM
2018; Google 2018; Intel 2018; Microsoft 201&ecause maintaining customer satisfaction in product security is

essential to their financial succgssn Eeten and Bauer 200869).

! The three fundamental tradeoffs in software system development are cost, schedule, and quality. In general, quality
correlates positively withast and schedule. Equally important, cost negatively correlates with scli@eleand Yang
1997, 197267).
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Figurel-1: Vulnerability discoveries per year, 192016

Consider the following example describing the sectméfgvant financial dependencietgpicted inFigure 1-
2, between the'ivendor and'f customer(van Eeten and Bauer 200868). ReducedY security investments from the
i"" vendor lead to increases in tHeg u s t o me rod)sassaciatsdtwith pfoduct exploitation (negative correlation).
These externalities (e,gcustomer losses from identity theft and fraud) negatively influence vendor reputatjorQf
course, there are costs incurred to the vendor for investments in product security (negative correlation) and vendor
standing with the customer directly influences future reventigs (These relationships imply positive correlation with
security inestments and security quality réation with customers. Decisiemakers managing software products must
therefore efficiently balance security investments through

customer security risks; this eraler is certainly not trivial.
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Figurel-2: Externalities with reputatiopresented by van Eeten and Bauer

1.2 Software security lifecycle (SSL)

A holistic understanding of softwamecurity necessitates comprehension of 38, software vulnerability
states in the lifecycleand how theyboth relateto the software development process and product lifecydleis
description of the SSiKirst outlines a common model for the produdéedycle, ANSI/EIA-724, with some tailoring to
encompass software security in the phase descriptidmsoverview of the software vulnerability staté&nfollows.
Lastly, it providespresentation of the new model for the software security lifecymldines several fundamental
components of the lifecycle (software development, the trustworthy computing security development lifecycle, the

process for software security assessment, and vulnerability disclosure/handling best practices).

1.2.1Product lifecycle

ANSI/EIA-724 defines the set of phases, depictefigure 1-3, as the product lifecycle modéElectronic
Industries Associatiof997) The original application for this model was for describing the lifecycle of products in the
electronics industryfSolomon, Sandborn, and Pecht 2000, -707). However,becausemodernelectronics almost
certainly include some form of a computer processor matched with software (e.g., smartphones, tablets, and notebook

computers), with some extensions, it is relevant for this seeceityric application. In chronological order, the dijele

stages are fAintroductiond, fAgrowtheé,utmaturityo, fisaturati ol
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Figure1-3: ANSI/EIA-724 Product Lifecycle Model

Table 1-1 describesoy examplé the ANSI/EIA-724 product lifecycle stages tailored to encompass security
aspects relevant to thissearch It assumes the softwareaker follows a processimilar tothe trustworthy computing
security developmeriifecycle (SDL) described isection1.2.3.1 For each stagd, lists notional sales, usage, feature
growth, security assessment related activities performegtdyps external to the softwaneaker, state ofhe security
processes at the softwanmgaker, and support levels provided by the softwaeker. The a b baée$ and usage rows
describe the changes over time in the productés customer ba
shouldcorrelate positively with level changes in the frequeth@gexternal groups perform security assessment activities.

The row listing feature growth in the product reflects a positive correlation with size and complexity of the released
software artifa. The row listing the softwanmma k er 6 s security process state descr
implementation state of the SDL processes matures. The final row presents the status of scheduled majeeded as

security update releases.

Table1-1: Notionalsummaries fostages in theANSI-EIA-724 Product Lifecycle Model

Introduction Growth Maturity Saturation Decline | Phase-out
Sales Low MediumA | High (peaks) | High HighA Low
High (declines Medium
from peak)
Usage Low LowA High High Medium | Low
Medium
Feature Medium High Medium Medium Low None
growth

2n a fashion similar to how Solomon et éolomon, Sandborn, and Pecht 2000,-7a7) described the lifecycle for

electronic parts.



Introduction Growth Maturity Saturation Decline | Phase-out
External Low Medium High Medium Low None
security
assessment
activity
Software- New Stable Mature Mature Mature Mature
maker 05
security
process
state
Support Major + Major + Major + Major + Security | All updates
level security security security security updates | discontinued
updates updates updates updates

1.2.2Software vulnerability states

Software vulnerabilities are simply a mistake performed in the design, imptatimn, or configuration of
software that results in information security riglany types of vulnerabilitiearepresented in the literature. Some of
the notable examples include poor memory managementalistated user input, the presence of racedé@ms that
expose some critical asset, improper access control, inadequate initialization, and execution of software functions with

unnecessary privileggsioward 2009, 6&1).

The scope of s research does not include technical specifics of software security faults or their classification.
For a discussion covering popular software security fault classifications (including taxonomy and ontology
developments), interested readers may reféde¢anier(Meunier 2008, 418) and the Common Weakness Enumeration
(CWE) initiative(The MITRE Corporation 2018b)See Erlingsson, Younan, Piess€Bdingsson, Younan, and Piessens
2010, 633658) and Daswani et alDaswani, Kern, ant&esavan 2007)for an introduction to common vulnerability

examples (e.g., buffer overflows, SQL injection, and unvalidated input).

Figure 1-4 and Figure 1-5 extendthe vunerability lifecycle statenodelby Arbaugh et al(Arbaugh, Fithen,
and McHugh 2000, 539), that originally included phases for fibirtho,
fipubl,i clistcyrdi pt i nlydrenamngfdb ifirdtetad htog exfemdmgtido dcoe@d yo to include i
temporal detailsextendng idi scl osuredo to i;nreplaeng & p u kelmpowirtay 0 dertdai iscri pti
iexpl oit edothatuseds Aemaekpaoaingdoc or recti ond t o i nreleasecakerngtivesr el ease a
andrepladng i d e a t hfior ewnm ot vhBolsoleted Mheyillustratethe set of possible states for a vulnerabilifit)

introduced (2) discovered prerelease, benkart; (3) vulnerability disclosed prerelease softwaremaker (4) removed



prereleasg (5) discovered postelease, benevolen{6) vulnerability disclosed postelease tosoftwaremaker (7)

security update deploye(B) obsolete(9) discovered prerele, malicious(10) discovered postelease, malicioyg11)

exploit releasedand(12) malware using expit released filntroductiond refers to vulnerahbi
within a product release cycle (i.e., prior to product releade)dressingthe vulnerabilitytakes three formsremoving

prereleaseremoving viasecurity updateand having the exploitation risk go away due to obsolescenthe two

elimination alternatives involve removal of the vulnerability from the software ancdy®gint of the corresponding

release to customers. Thbsoletealternative involves a vulnerabilithat remainsn a product that haseen phased out

and is hopefully no longer relevant

EXDoSUr e Level Level Level Level Level
P 0 1 2 3 4
| nt r oduced
Di scover ed

(bene. ) Di scover ed .
St at e { Renmbved : Expl oi t ed
i (mali.)
Di scl osed
M ti gated

Figurel-4: Vulnerability lifecycle stategn the SSL

Vulnerability states arencreasingly ranked by customeskiexposure, from left to right.The
abbreviations are: ibene. 0 for benevolent; and dAmali. o
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Figurel-5: Vulnerability lifecyclestate sequences in the SSL

The abbreviations are: ibene. 0 for benevolent; fAmali.
idi sclo. o for di secd;o sheedx p Ifior.eom.foo rf cerlx wdeomagtvealn d Afmab sv. @ f or
for obsolete.

For introduced vulnerabiliti€sthe model presents seven state sequences plus several sequential combinations
of them. It is important to note that security assessment activikespor med by each entity type |
ibenevolento) typically happen concurrently. Consequently,
state sequences for either entity type | miaghet bemexwiodtendndipsrc
and fieliminati ono -254toa tae-@s4ebdlu errecfe se c(ti .teh.e, pirleferred outcome f
vulnerabilities{e.,no customer exped eraslke. behlee ofi prndt dissardywpdaty 0 and fAde
rel easeb67d .ebhd0fillrepresent the next besbutésskbfuenthe(fintry

80) describes a fortunate result that results in no custome

Sequences beginning withteh e r  fipr er el ease matriediemsse dnad dav eruysd ddrs cfop

undesirable yet realistic. -daye Vwlrmemratdielfiitnye ssitthweatiindm morud

3 Obviously, preventing the creation of the fault altogether is ideal.
7



s equeR¥EEl 20l The | att e-L01%1s2 0t. h e Esietghueeleaseelhendvblerd discaveryt

sequences should follow the exploit or malware release .

Admittedly, it is possible for exploited vulnerabilities to fail benevolent discovery or lack sufficient resources

to attain elimination thragh security update releas@s hese situations have been omitfezm Figure1-5, acomplete

diagram would reflect these changes using-8e@idgEmdeixtensio

80 .
1.2.3SSL model

It is important to first orient the security problem (i.e., vulnerability discoveries) within the context of the
software security lifecycle (SSL). Inthissearch t he SSL is presented as a circular
lifecycle (seerigurel-6); 2) incorporates iterative and incremental development (11D) for producing secure software; 3)
demonstrates |1 D6s r elredaseouinerability discdvery; gnd iehtifies mteracfionspthats t
influence customer satisfaction in security qualiyyso, manysources provided inspiration developing the SSL model
(Arbaugh, Fithe, and McHugh 2000, 539; Lipner 2004, 21.3; Howard and Lipner 2006; Lipner 2016; Larman 2004;
Electronic Industries Association 1997; Cusumano and Yoffie 199896Gtankosky 2002; Bourque and Fairley 2014;

International Organization for Standardizatip013; International Organization for Standardization 2014)

Figure 1-7 illustrates the SSL from the softwanea k er 6 s per spect i veFigaeldd), in an
identifies points where the vulnerability state makes transitiofiie SSL starts at the top leftFifjure1-7 and proceeds
clockwise, progressing chronologically with stages for product planning, atajpatchrelease 11D cycles, and security
assessment cycles. The chronological path then diverges into Flow1 and Flow2; from here, all ensuing traversals depend
on the discovering entity types. Flowl, the outer arc, initiates when ex@lazkhatsdiscover a vuierability and
includes subsequent release cycles for exploit software and malware. Flow2, the inner arc, begins when external
Whitehats or softwaremaker analysts, realize a vulnerability discovery petgase. For external Whitehat discoveries,
Flow2 can also be diverted to associated Hpedty entities involved in facilitating mitigations to security threats (e.g.,

companies that make antialware software). Eventually, the SSL comes full circle when Flowl and Flow2 paths

4 For clarity, some flow paths are omitted (e.g., the flothpdrom each Blackhat release cycle rectangle to the security
assessment cycle triangle).
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converge at the point iwhich softwaremakers handle vulnerabilities.

Throughout all these stages and across SSL iterations, the sefhaéer uses knowledge managem@ivl)
to support continual improvements to security quality and provides customers with interim strateggelsidorg risk.
Moreover, the SSL explains customer perception of security quality through sofiveder or thirdparty information,

software products (i.e., new releases or updates), and external softwat® threa

A P A = o e BN
P P P S S
VX Ao YAy Ao Y A Y

Figure1-6; SSL iterations within each product lifecycle model stage
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Figurel-7: Software security lifecycle from theoftwaremaker perspetive



Table1-2 describesSSL stage activities in further depth and indicates that vulnerability discovery occurs within

the security assessment stage, which is discussed in Se@i8r2

Tablel-2: SSL stage activitieBom the softwaremaker perspective

Stage

Description of activities

Product planning

Decision-makers assign critical resources and define or refine overarching product
security requirements, policy, processes, budgets, and schedule milestones. A
decision to retire a product occurs at this stage, effectively rendering existing
vulnerabilities obsolete.

Major/patch
release cycles

Software-makers create new software using a security-focused 11D model that
includes steps for requirements, design, implementation, verification, and release.
Occurring at this stage are fault creation (i.e., origin of the mistake), prevention (e.g.,
prerelease discovery with subsequent removal), removal (e.g., post-release discovery
with subsequent removal), and mitigation (e.g., interim updates to reduce customer
exposure).

Security
assessment
cycles

See Section 1.2.3.2 for details. Vulnerability discovery occurs at this stage.

Exploit/malware
release cycles

External Blackhat software-makers create and release exploit software and malware;
customer risk exposure escalates.

Third-party
security entity
release cycles

External Whitehat entities create and release security support software (e.g., anti-
malware or static analysis tools for locating vulnerabilities); these external products
support risk mitigations for customers.

Vulnerability

Security teams perform inspections to confirm discoveries, and when necessary

handling subsequently perform root-causal analyses and risk assessments, and prepare

upcoming major or security update release requirements.

1.2.3.1Security development lifecycle(SDL)

The SDL is a series of phases that augmensttitware development process presented next, comprise security
focused activities, and produce additional deliverables supporting trustworthy computing4oatrd and Lipner

2006; Lipner 2004, 23),

Amongst the many models for software development, this research chooses the iterative and incremental
development model for demonstrating release cycles in the software security lifecycle. Theeigmdtincremental
development (1ID) model for software consists of a series of sequential, smaller release iterations, each of which builds
on the previougLarman 2004) Major release cyclefr large software typically include numerous internal iterations.

Conversely, update cycles for security releases usually consist of no more than one or two internal iterations.

In the software lifecycle,hiere are common definitiorthat describematuity levels for major and security

update releasesFigure 1-8 identifies the five typical versions fanajor releasesn large software development as
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ipreliminaryo, fdalphao, % bEachaekease vesiamobilddimvolve @ne oramote I maj or 0

sequences. Preliminary releases demonstrate a limited subset of features and are internal to thensddiwardpha
releases are also internal but demonstrate a more complete subset of the ovarallrégptirements. Beta releases
support most feature reqeinents; typically, the softwam@aker presents this version internally and to a small group of
external users. Candidate releases support all feature requirements ancesotikenrs present thesersions internally

and externally. Major releases freeze development @iLeing this iteration softwareakers only allow modifications
supporting correction focritical issues) and softwaraakers distribute these as the final public rel§&eumano and
Yoffie 1999, 6069). In a slightly similar fashion, versions for security update releases typically have one internal

candidate release prior to the final public security updataseléseéigure 1-9).

Maj or
Rel ease
Cycl e
Pr oduct Most Feat ur es Code
L f eat ures
vi si on freeze freeze
conpl ete | |

. T v v
Rel eases | Preliminary = Alpha [» Beta [» Candidate
‘ DY i U U

> Mejor |
A A

Ti rTe /,/ ‘\ ! ‘\ ! ‘\ [ \‘\ [ \‘\
A LA A S S S
\A/// \A//// \A//// A//// \A///

Figurel-8: lterative and incremental development model for a major release cycle

Security
Updat e
Rel ease
Cycl e
- —~
Rel eases | | Candidate | _ Security
¢ | (internal) updat e
< P
Ti me / } / l

Figure1-9: lterative and incremental development model for an update release cycle

5 This set of software releases is based on those providé@usyimano and Yoffie 1999, D).
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Iterations in the incremental and iterative development (1ID) process for software typically execute the activities
and phasefisted inFigure 1-10 and in 1ID, the scope for each of the setintained phases varies over tik@rman
2004) To explain, the effort proportionsifeach of the 11D phases depend on the maturity of the corresponding iteration.
For example, earlier iterations typically emphasize the requirements and design phases, while later ones have an emphasis
on implementation and verificatiorTable1-3 describes 11D preparation and continuous support activitiesTahtg1-4
provides brief descriptions for the 1ID phases. Additionaltyjncorporatesthe trustworthy computig security
development lifecycle (SDL) into this IID procesd.ast, it is worthwhile to point out the step similarities with the
traditional waterfall development mod&oyce 1970, ) and the strong connections between a product (i.e., the system)

and software.

Start .
Pr oduct pl anni ng
Rel ease Requi renment s Rel ease
Request (Phase 1) Delivery

Rel ease

Security
(Phase 5)

Updat e
Rel ease

Cycl e

R Know edge QO
N Managenent M QQO

Desi gn
(Phase 2)

Verification
(Phase 4)

| npl enent ati on
(Phase 3)

Figurel1-10: lterative and incremental software development process
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Table1-3: IID activity descriptions

Activity name | Description

(timing)

Product Product planning activities set the stage for the cycle. Decision-makers at the

planning software-maker determine product needs/goals/objectives, define some of the critical

(preparation) product and process requirements, allocate resources to initiate the first few phases,
and identify major schedule milestones for the initial lifecycle phases.

Knowledge Knowl edge man ag eerages televankiMellectidl assets to improve

management organi zat i on a(Stankasky 2092).nkMrsa enolti-disciplinary approach to

(continuous) retaining and growing organizational knowledge that supports all phases and iterations

in the 1ID process. Among other things, the KM solution within an organization
provides technology to archive and locate specific information or personnel, training,
lessons learned from previous products, and technical information from present and
past software release cycles.

Table1-4: IID phase descriptions

Requirements

Phase Description

number:

Name

Phase one: Activities that include Aehicidbatiooan, aand

(Bourque and Fairley 2014) of software requirements (e.g., necessary software
features, functions, capabilities, performance, interfaces, constraints, and so on)

Phase two:
Design

Activities supporting translation of the requirements into specifications that describe the
software structure and provide a foundation for constructing the product (Bourque and
Fairley 2014)

Phase three:
Implementation

AiCoding, verification, unit
supporting software creation (Bourque and Fairley 2014)

testing, int

Phase four: Activities supporting evaluation of the quality of a software release (e.g., static and

Verification dynamic inspection) and confirmation that the product satisfies all requirements
(Bourque and Fairley 2014)

Phase five: Activities supporting generation and distribution of the various staged versions of a

Release product (i.e., preliminary, alpha, beta, release candidate, and major release)

1.2.3.2Vulnerability discoveries in the S&.

The problem of information security (i.e., vulnerability discovery external to softwateers) is grounded

within the context of the SSL and its security assessment cyclég. security assessment cycles within the SSL

implement the agile process foulmerability discover§. To describe these cycles, thesearchpresents an iterative

® Software engineering processes support controlling complexity, managing scope, meeting schedule and cost constraints,
and improving team performance. Agile processes enable some of the same concepts but support dealing with uncertainty

and provide manesgrability (e.g., managers can monitor status and readjust goadgh iteration or sprin{Larman

2004)
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software security assessment process (ISSAP), which is a scientific method for reviewing software security quality that
applies taall entities performing security assaments. The ISSAP, showrFigurel-11, starts with assessment planning

(at the uppeteft corner) and proceeds clockwise. As part of planning, analysts set overall security assessment goals and
exit conditions construct prioritized task backlogs, and assign key personnel to the top priority tasks. Then, analysts

gather and prepare software release artifacts for assessment, perform egtibase engineeringRE), formulate

vulnerability hypotheses and rekaw functional tests, implement and verify tests on artifacts, and assess security quality
of artifacts. Benevolent researchers document and report results for their finadlttapately, malicious researchers
develop and release corresponding explaitg malware that use the vulnerabilities discovered in their assessment cycle.
Additionally, knowledgemanagemenfKM) activities enhance assessment performance throughout ISSAP iterations.
As time and resources allow, analysts perform subsequent IS8ées, each time reviewing the results from the

previous cycle and then continuing with another iteratibable1-5 provides further details about ISSAP steps.
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Figurel-11: lterative software security assessment process (ISSAP)

Table1-5: ISSAP steps

Step Description of activities
Gather | her rel f it information from th |
artifacts and Analysts gather relevant software artifacts and information from the software release
. . (e.g., design information, source code, binary artifacts, etc.).
information
p Analysts perform preparation activities, including inspection and reformatting of binary
repare . . | .
artifacts artlfacts,. bmary dlsa§sembly into assembliy language, and assembly-language
decompilation into higher-level programming languages.
Analysts work towards attaining artifact comprehension, which involves software RE
Comprehend ; . ) . . . _
) and includes performing static analysis and dynamic analysis on available software
artifacts )
artifacts.
Formulate Analysts formulate or use pre-existing threat models to identify potential attack surfaces
hypotheses and then use these threat models to formulate hypotheses for potential vulnerabilities
and related that could have higher impact; analysts also consider tests or analysis procedures for
tests evaluating these hypotheses.

15



Step

Implement and
verify tests on
artifacts

Description of activities

Analysts test functional boundaries (a.k.a., fuzz testing) or vulnerability hypotheses on
the target product or similar devices providing target emulation.

Assess
security quality

Analysts confirm suspected vulnerability locations in the artifacts. Analysts then
prepare the security assessment document and report results.

1.2.3.3Vulnerabilit y disclosure and handling

Two recent standards provide processes for valnbity disclosure to softwareakers (ISO/IEC 29147) and
vulnerability handling by softwarmakers (ISO/IEC 30111).Figure 1-12 outlines these two process and their
relationships with each other. The first standard, ISO/IEC 29147, outlines recommendations for external entities
performing security assessments to disclose vulnerabilitiey discover to the softwareaker and additionally sets
expectatios for the softwarena k e r 6 s (Intersapooah ®rganization for Standardization 2014Jhe second

standard, ISO/IEC 30111, outés recommendations fooffwaremakers in responding to pestlease vulnerability

discoveriegInternational Organization for Standardization 2013)

| SO | EC 29147
Vul nerability
di scl osure Devel op B ] 7
capability to // Recei ve \\ <I nform:
recei ve and /vul nerability) finder /
‘Devel op di sseminate || report from | ‘ —
di scl osure vul nerability | external /,“ Acknowl edge Di ssem nat %
policy i nformation \ sour ce / recei pt \Wadvi sory J
A A
~ R B no— ‘
Devel op / Recei ve \
handl i ng [vul nerability |
pol i cy and ' report from | yes— -
organi zational | | i pnternal |
f r amewor k \\\ SOl e ///
— Prelimnary
i nspection
| SO'| EC 30111 and ri sk
Vul nerability assessnment | |
handl i ng 4 -
processes Devel op /Engage in
resol ution ( post - \‘

and/ or produce
remedi ati on

>

\
\

Figure 1-12: ISO/IEC 29147, ISO/IEC 30111 processes
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Respectively, these atkevulnerability disclosureand winerabilityhandling processes.

The ISO/IEC 30111 related sydvocess for vulnerability resolutionnd remediation (sedigure 1-13)
presentedy this research stems from industry best pract{tgsner 2016) To minimize resolution delivery time for
security updatesddressing those vulndiitities designated as criticalnspection and preparation of security patch
requirements begins straightaway and the output subsequently supports an immedifteaadtsecurity patch update.

For all vulnerabilities, there ari@aspections that result in identification of systemic problems. For those identified as
systemic,the softwaremakermust make alecision for design and development of an automated discovery tool. All
vulnerability discoveries resulting from manual amgtomated tool identification have detailed inspections and security
patch requirements prepared. For vulnerabilities classified with negligible user impact, deferment of security update

releases to the next scheduled release is common industry practice.
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Figure1-13: Vulnerability resolution and remediation process
1.3 Strategies to reduce risk

Fortunately, strategies do exist to reduce risk and ensure customer satisfactionity gaality throughout
the software security lifecycle (SSL). Softwareakers can refine processes and policies, reallocate critical resources,
and alter releaseycle requirements or constraints (e.g., feature requirements or schedule and budgetrigjitaiiese
adjustments have two foci of applicatifor reducing postelease discovery risk and minimizing its impakteal and

Area? (sedrigure1-14). Activities in Areal (red) ainto improve security qualit prerelease(Williams, Gegick, and
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Vouk 2008) while Area2 (green) activities seek to control customer perception of security qualitiefeesté (Petter,

Delone, and McLean 2013;62). Area2is divided into two sections: Area® , i n

whi ch

t he

goal

threat of exposure (e.g., by decreasing sersponse times for discoveries or including faolerance by design

methods); and AreaB, in which the goal is to inhibit the discovery of vulnerabilities by entities with malicious intent
(Collberg and Thomborson 2002, 7386). Unfortunately, due to the high costs of achieving quality, managers must

often decide which alternatives will provide maximal im@aet decision that is aided by the security modeling

techniquediscussed next

Key

alternatives /Refl e y/

Al ter \

///Ref|ne\\\PI|C|e§>x\eqU|renent§//

_

\ processes. ——— Ater ™~
~—__ Real | ocat e~C const raints. S
\r esources/
|
Areal: Area2: Control
| npr ove cust omer perception
Key quality of quality
application ‘ | ‘
areas Area2- A Ar ea2- B:
Reduce t hr eat | nhi bi t
exposur e di scoveri es

Figurel-14: Mitigation alternatives and application areas

" The customer perception of security quality can be influenced by softwake informationsharing (e.g., public
transparency or prompt security risk notification) and service quality (e.g., security patch respongetitee)DeLone,
and McLean 2013,-B82), as well as through design information secuf®arker 1997, 57382) and the inclusion of
techniques inhibiting public discovery of vulnerabiliti@ollberg and Thomborson 2002, #386).
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Chapter 2. Literature Review

This chapter presents the origins for security modeling, formally introduces vulnerability discovery modeling

(VDM) techniquesand outlinesareas for their improvement.
2.1 Security modeling origins

Security quality modeling requires historical information and this warrants a brief synopsis of the public

vulnerability database origins.

Archives from the early 198@krough the turn of the cerucontain the digital footprints for thimitial security
assessment movement. Notable sources of information weraltisecurity and comp.security.unixtUSENET
newsgroups(Bishop 1995) the 260C¢° and Phrack nonstandard publications, the ACM RISKS digest mailing list
(Neumann 1985, 1and theBugTragmailing list (SecurityFocus 2006)Amongst these and other sourcas,increase
occurred in publications that detailedmmon vulnerabilitiesnd their corresponding exploitation techniques. Notable
examplesincluded AiSmashing t he S{ia,ctackdverfowsfalephl B086fi Rrert aufrint d nt o | i bco (
returnoriented programming (solar designer 1997)Aa NT We b o ITe@gyn Vul ne rSQb injedtiddi eso (i . e. ,
(rain.forest.puppy 19981 Once Upon heag-averflow) (atonymeus2001) A E x p | ¢Earmhak Btring

Vul ner a(cutltearh tese 80612 n d A lBteger iO¢erflows (blexim 2002)

In the 190s, the growth in vulnerability and exploit spécknowledgeand the increasing frequency in security
failures significantly raised public awareness of the existence of security faults and of the phenomena supporting their
discovery. In 1999reationof the common vulnerabilities and exposures (CVE) database answered the multiple calls

in the literature for a public historical vulnerability databéBeaker et al. 1999; Aslam, Krsul, and Spafford 1996)

The combination of discovery event information from vulnerability databases, software characteristic data from
code repositories, and recorded engineering process execution metrics alépralviable data for exploratory studies.

For this problem phenomenon, research areas of inferstedon factors possibly influencirthediscoveryof software

8 First appearing in 1984Goldstein 2009)
® First appearing in 199@ecurityFocus 2006)
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vulnerabilities Scholars applied software quality modeling techniques using informationthese sources for better

understanding of the discovery phenoren
2.2 Vulnerability discovery modeling (VDM)

One importantsoftware security modeling techniqusulnerability discovery modeling (VDM)helps
managers make decisions on how best to redsk¥. Simply put,VDM techniquedorecast security fault discoveries

over time(Alhazmi and Malaiya 2008, 122).

Vulnerability discovery models are an application of software reliabilipdets that uses patterns found in
historical discovery events following software releaséSR) to make predictions of discoveeyent counts over time.
They enable managers to allocate resoufoesubsequent release cyclimt help ensure poeséleasevulnerability
handling quality and response timegmain satisfactorysee Area2 irFigure 1-14). VDM methods, demonstrating
varying levels of success, include: linear and polynomial regression niédledgmi, Malaiya,and Ray 2007, 21228;
Alhazmi and Malaiya 2008, 122; F. Massacci and V. H. Nguyen 2014, 144%62; Ruohonen, Hyrynsalmi, and
Leppénen 2015,-20; Rescorla 2005, 149); growth-curve modelgAlhazmi, Malaiya, and Ray(®7, 219228; Alhazmi
and Malaiya 2008, +22; Woo et al. 2011, 562; Joh and Malaiya 2014, 144859; F. Massacci and V. H. Nguyen
2014, 11471162; Ruohonen, Hyrynsalmi, and Leppanen 20120})1 models based othe nonhomogeneous Poisson
process {IHPP, see Appendi¥B.2) (Rescorla 2005, 149; Alhazmi and Malaiya 2008, 122; Okamura, Tokuzane, and
Dohi 2013, 1523; F. Massacci and V. H. Nguyen 2014, 14462; V Nagaraju, L Fiondella, and Tadji 2017, 31
50; Rahimi and Zargham 2013, 3@87), effort-based model&Kimura 2003, 27287; Kimura 2006, 25@61; Alhazmi
and Malaiya 2005, 61620; Woo et al. 2011, 562; Ozment 2006, 236); time-series model§Roumani, Nwankpa, and
Roumani 2015, 320); and various specialty modgldnderson 2002; Rahimi and Zargham 2013,-39%). Table2-1

lists select VDMs demonstrated in the literature and, where applicable, their originating software reliability counterparts.

Table2-1: VDM technique cross reference

Software Reliability Model
VDM VDM Source Source
Thermodynamic entropy model (Anderson 2002) (Brady, Anderson, and Ball 1999)
NHPP, Software vulnerability (Kimura 2006, 256-261) (Yamada and Fujiwari 2001, 205-
assessment model 218)

10 Other modeling methods (e.gelease schedule modelii§avusoglu, Cavusoglu, and Raghunathan 2007;1BE)
and winerability prediction modelingwilliams, Gegick, and Vouk 2008gxist, but are not useful here.
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VDM

VDM Source

Software Reliability Model
Source

Quadratic (Second order
polynomial) model

(Rescorla 2005, 14-19)

(Shooman 1976, 268-280)

NHPP, exponential model

(Rescorla 2005, 14-19)

(Goel and Okumoto 1979, 206-
211)

Logistic model

(Alhazmi and Malaiya 2008, 14-
22)

(Yamada and Osaki 1985, 1431-
1437)

Gompertz model

(Ruohonen, Hyrynsalmi, and
Leppénen 2015, 1-20)

(Yamada and Osaki 1985, 1431-
1437)

Effort-based model

(Alhazmi and Malaiya 2005, 615-
620)

(J. D. Musa 1975, 312-327)

Littlewood-Verrall Bayesian
model

(Ozment 2006, 25-36)

(Littlewood and Verrall 1973, 77)

NHPP, Musa-Okumoto
logarithmic Poisson model

(Ozment 2006, 25-36)

(J. Musa and Okumoto 1984,
230-238)

NHPP, Moranda Geometric
Poisson model

(Ozment 2006, 25-36)

(Moranda 1975, 327-332)

Weibull model

(Joh, Kim, and Malaiya 2008,
299-300)

(Schick and Wolverton 1978,
104-120)

NHPP, generalized Gamma
model (includes exponential
NHPP and logarithmic extreme-
value at min, aka Weibull)

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Hiroyuki, Mitsuaki, and Tadashi
2007, 81-90; Goel 1985, 1411-

1423; Goel and Okumoto 1979,
206-211)

NHPP, Pareto model

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Littlewood 1984, 157-159)

NHPP, truncated normal model

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Okamura, Dohi, and Osaki
2013, 135-141)

NHPP, log-normal model

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Achcar, Dey, and Niverthi 1998)

NHPP, truncated logistic model

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Okamura, Dohi, and Osaki
2004, 14-22; Ohba 1984, 144-
162)

NHPP, log-logistic model

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Gokhale and Trivedi 1998, 34-
41)

NHPP, truncated extreme-value
min/max (Gompertz)

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Ohishi, Okamura, and Dohi
2009, 535-543; Yamada 1992,
964-969)

NHPP, logarithmic extreme-value
at max (Frechet)

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Hirata, Okamura, and Dohi
2009, 225-236)

NHPP, hyper-Erlang

(Okamura, Tokuzane, and Dohi
2013, 15-23)

(Okamura and Dohi 2008, 232-
239)

Scrying method

(Rahimi and Zargham 2013, 395-
407)

NA

22




2.3Improving VDM techniques

To date, aceptance of discovery models is very limiteeicauseseveral related and significant challenges
remain to be addressed. First, no general pattern inbn@lser discoveries exis(seeNVD data issues discussiam
Chapter 8; as well, there is the potential that one could make predictions prior to a general change in discovery trends
(Woo et al. 2011, 582). Clearly, factors not accountedrfwould explain the lack of patterns in the phenomenon over
time (e.g., differences in skill and numbers of discoverers, return on investment for discovery of vulnerabilities, levels of
design information security, amount of cedrise, etc.). Second,sudts from one application are not comparable to
others(Ozment 2007, 4.1), as across applications there will be many differences in SR and SAP variables and these
each influence the phenomendifferently. Thus, the modeling results from a waiowser are not comparable to those
from an operating system or even those from differentlrelwsers. Third, the models do not provide a means to adjust
SR and SAP variables, for exploring their irghce on discovery. Fourth, as pointed out by s@@mment 2007, 4.1;

F. Massacci and V. H. Nguyen 2014, 114162) many applications of discovenyodels violate static code assumptions
(e.g., seéAlhazmi and Malaiya 2005, 61620; Alhazmi, Malaiya, and Ray 2007, 2228; Alhazmi and Malaiya 2008,

14-22; Woo et al. 2011, 562; Joh and Malaiya 2014, 144%59; V Ngaraju, L Fiondella, and T Wandji 2017,-30)).

Because softwarmakers can refine processes and policies, reallocate critical resources, and altecyelease
requirements or constraints (e.g., feature requirements or schedule and budget limiiatemgy be very useful to
model the influence from variables in these areas to support making related decisians.i n g -lao i | dkiagcovery
model that incorporates using a wetfined set of variables for describing SR and SAP combinations wopfzbgu

decisions for strategies to reduce risk and ensure customer satisfaction.

Unfortunately, only four VDM techniques include any SR and SAP input variables; the remaining techniques
treat the probl em abso x&Rabimiand Zanghm(2013,1386407)propdsbd the Sdrying method,
which is the sole VDMalternativeusing SR variables; however, this method requires access to source code and
incorporates, out of numerous facs, only codecomplexity and compliance rules. An application of the mesine
function (MVF) from Mus a(@lbaznhi ansMalaiyae2@086, 61520; & D. Musa &9&5, 342 d e |
327), plus altered forms of thblusaOkumoto logarithmic NHPROzment 2006, 236; J. Musa and Okumoto 1984,
230-238) and Yamaddrujiwara testingdomain modelgKimura 2003, 27287; Kimura 2006, 25@61; Yanada and

Fujiwari 2001, 205218) are the only VDM alternatives using SAP variablésnfortunately, their quality suffers from
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SAP data limitations that correspond with vulnerability discoveries; as well, some violate the static code assumption for
softwake reliability modeling(Ozment 2007, 41; F. Massacci and V. H. Nguyen 2014, 11462) and they all

incorporate only one SAP variable (i.e., assesnt effort) via proxy measurés

Naturally, the dearth of both SR and SAP information and corresponding data for historical vulnerability
discoveries has inhibited the introduction of multivariate VDM techniques. Despite this, one can still makthase of
through the Bayesian approach to analfgiSamaniego 2010}ps it supports multiple types of datancluding expert
opinion inf or ma brecasting perfdfthaade 6f&/DMethods caral§obe improved by usin@ayesian
model averaginj (Madigan and Raftery 1994, 153%46; Sarishvili and Hanselmann 2013)landthis isalsoenabled

through an approach that includespert judgment methods

LE g., Alhazmi and Malaiya define this proxy@ B "Y 0 , where'Y is the total number of users over time and
is the percentage of users operating the software over(tWfoe et al. 2011, 52).

12 Bayesian mdtods are more suitable when the data are scarce as they enable the use of numerous and diverse
informationtypes including expert judgmen(Samaniego 2010)

13 Averaging over all the modeglresults in better average predictive ability whempared to any single best model
(Madigan and Raftery 1994, 153%46; Sarishvili ad Hanselmann 2013;8).
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Chapter 3. Researchconceptualframework

This chaptempresents the overarching conceptual framework for this rese@asgven parts:Section3.1lists
the research questiorSection3.2idenifies the research hypothes&ection3.3introduces the purposnd usefulness
of the researchSection3.4 notes the fundamental assumptions for the rese&ebtion3.5 discusses several items
pertaining to research scope and perspectheztion3.6 provides the conceptual mogaind Section3.7 presents the

research variables.
3.1Questions

Investigaton ofthis problemrevealedour keyresearch questiortbatassociate wittthe folowing two areas:
(1) fi dw do discoveriebehave over tine pand (2)ii Wat VDM techniques were idealoThe firstresearch question
identified using RQ1, falls undeuestionarea(1) andwas,i How does t he b aanbihationdlueScB and SAP
postrelease vulnerability discovery over tiffte T h e ong identiied dsingRQ2,also falls undequestionarea(1)

andwa,iHow do the covarehétaeseintilonenaki piosy dunsbered®@Bry over ti

associates with quésn area (2) antvas, i Wh at i shlatkbeéViDeMs t ec hni que? 0 rebdareh f ourt h an
questionnumberedRQ4,also associates wituestionarea (2) anavas,i Wh at i gcledrtodV DMst echni que?0
3.2Hypotheses

Deliberation on the fouresearch questionsducedfour correspondinghypotheses. The first hypothesis,
identified using RH1, associates with RQ1 andimseline SR and SAP combinations have increasing then decreasing
discovery rates over timedThe second is a sétat assocites with RQ2 ands identified using RH240. These are
listed below inTable3-1 and eaclassociates with one of tid covariates that are explored in depth (Seetion4.3.3
for introductionof covariates associated with these hypothesekSection4.4.2for the details concerningpow these
covariates are used in theultivariatemodek). The third is identified usn@ H3, associ ates with RQ3 and
model averaging is the beétb |-bc ¥®M t echni que. 0 The fourth and |l ast hypo

associates with -RakdBMAisthe best,c |-eavddart lex hni que. 0

Table3-1: Subset of hypotheses associated with RQ2

ID Hypothesis

RH2.1 | Software size is negatively correlated with vulnerability discoveries over time.
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ID Hypothesis

RH2.2 | Product price is negatively correlated with vulnerability discoveries over time.

RH2.3 | Assessment tool quality is positively correlated with vulnerability discoveries over time.

RH2.4 | Assessment personnel effort is positively correlated with vulnerability discoveries over time.

RH2.5 | Assessment personnel quality is positively correlated with vulnerability discoveries over time.

RH2.6 | Level of dynamic access to software is positively correlated with vulnerability discoveries
over time.

RH2.7 | Amount of reused software is positively correlated with vulnerability discoveries over time.

RH2.8 | Amount of available design information is positively correlated with vulnerability discoveries
over time.

RH2.9 | Amount of obfuscated software is negatively correlated with vulnerability discoveries over
time.

RH2.10 | Amount of cleansed software is negatively correlated with vulnerability discoveries over time.

3.3Purposeand usefulness

The purpose of thisesearchis fivefold and includes 1) presentation othe KueGhosh NHPP as a VDM
technique;2) presentation 0BMA as a \DM technique;3) presentation of multivariate, timedependent discovery
model for software with its corresponding variable g¢tdemonstration ofpproaches for gathering multivariate data
and for performing subsequent analysis of ting@tivariatemodd using this dataand5) evaluation ofthe hypotheses

listed in the previous section

This researchs usefulfor the following reasonsl) it can incorporate expegdgment recommendations that
bolster baseline analysis result€é NVD data issuesstiussiorin Chapter §; 2) it enables comparison of results from
differing applications; 3) it supports trade studies for controllable variables (e.g., see forecasting examples in Section
5.4.2; 4) it does not violate modeling assumptions for a static code base; and 5) its Bayesian ledatds the data

sparseness issygrovides informative prior distributionandnaturally characterizes uncertainty in thedabparameters.
3.4 Assumptions

This research depends on several key assumptions that facilitate its n{steldgle3-2). First, the research

accounts for factors ou'hymakiegasumptions ebowt vapoasrlavelsf release gqualigyc t i v e s

14 postrelease securitfault discovery depends on pedease fault creation and removal.
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(Assumptions ASP). Accordingly, this research investigates only the variables influencingrglesise discovet,
thereby limiting the applicability of its results to Area2 (§égure1-14). The following assumptions (i.e., AS1* AS3

5) come from a category of traditional softwaediability models based on the néwomogeneous Poisson process
(NHPP, see AppendixB.2). Assumptions AS1* (i.e., the alternate to AS1) and AS3aken from Yamada et al.
(Yamada, Ohba, and Osaki 1983, 4/@&4), are modified for modeling the discovery of software vulnerahglitrethe
baselineSR and SAP Assumptions ASG are essential to modeliraybitrary SR and SARcombinations usinghe
multivariatemethods introduced by this research. Assumption AS8 is historically used in software reliability médeling
The final twoassumptions relate to data elicitation. Assumption AS9 eliminates an area of uncert&iRtwfm SAP
used to gain information about vulnerability discovery, and Assumption AS10 is necessary for thguelgmeent

elicitation method.

Table3-2: Key assumptions

ID Description
agy | Afixed number (e, pt hp bc fixho) of vulnerabilities is released for the respective elicitation
scenarios

The initial number of vulnerabilities within the software release is random (Yamada, Ohba, and
Osaki 1983, 475-484)

AS2 The types of vulnerabilities within the software release are random

AS1*

A software release undergoing security assessment is subject to discovery of vulnerabilities at
AS3 random times caused by security faults present in the release (Yamada, Ohba, and Osaki 1983,
475-484)

The time between discoveries (k-1) and k depends on the time to discovery (k-1) (Yamada,

AS4 | Ohba, and Osaki 1983, 475-484)

ASS Each time a discovery occurs, the vulnerability discovered is immediately removed, and no other
vulnerabilities are introduced (Yamada, Ohba, and Osaki 1983, 475-484)

AS6 SR and SAP covariates are static throughout the security assessment of a particular software
release (Cox 1972, 55-66)

AS7 Vulnerability discoveries over time, for arbitrary SR and SAP combinations, are realized by
modulating (i.e., scaling) discoveries over time from the baseline SR and SAP

ASS The elicited data, cumulative discoveries over time, are realizations of independent, identically

distributed random variables

AS9 The software binaries (described by SR variables, see Section 3.7) are available unencrypted

151n a situation in which the number of existing fauttsinknown, Assumption AS1* would be substituted for
Assumption AS1.

6 There has éen some debate over Assumption AS8 in the literature (e.g., there is the special case for the emergence
of new vulnerability types, which typically results in numerous related discoveries following closely thereafter)
(Ozment 2007, 4.1).
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ID Description

The expert-provided distributions (see Section 4.3.2.1) are independent (i.e., Cooke classical
model independence)

AS10

3.5Scope and perspective

The research scope and perspective as well as external factors affect this gtsichas Btructured elicitation
requires working directly with experts, practical considerations (i.e., for the amount of work involved) limit the research.
Accordingly, this research investigates factors that influence the discovery of vulnerabilitizsatigmicsecurity
researchers performing security assessméenEgure3-1 presents the typical roles; the red areas indicate those groups
considered outside the scope for this research. Second, this resessatotimclude vulnerability type into the models
becausat would make the already complex elicitation process less manageable (see Assumption AS2). Finally, two
confounding factors require special attention regarding methodology: +etinvestment ROI) variables that can
significantly influence certain SAP factdfsand softwaremaker decisions that can affect the quality of the artifacts
releasetf. In terms of controlling ROI variables, this research uses elicitation scenario construction (iedracluc

Sectionst.3.2.1and4.3.3 while Assumption AS1 (seEable3-2) addresses the issue of confounding factors for releas

quality®®.

"In defense, it is reasonable to speculate that the influence from most of the propos@dir®RandSAP factors on
vulnerability discovery should be generalizable outside the population of expeitipadirig in this study.

18 For example, the levels and quality of resources applied to security assessment should correlate positively with the
return on investment.

¥ For example, skill of the developers or the resources applied to prerelease sesasgyrent should influence
release quality.

2 For example, release details concerning participating sofiwaieers (e.g., developer and tester skills, security quality
assurance processes, and design specification complexity), would not be explicitly Bpawost external security
analysts.

28



Figure3-1: Security researcher roles (exppapulation)
3.6 Conceptual model

The conceptual model describes research variables within factor groups (by listing jheemtith each group)
and illustrates their interactions (Seigure3-2). The groups include discovery return on investment (G1), the software
maker business (G2), the software release cycle (G3), softwareer¢®4) security assessment profile (G5), security
reputation (G6), exploit or malware software release (G7), and security reputation propagation (E8urel8-2, the
green areas indicate the factor groups tnode activities that fall within the scope of this research. Notably, this model
places vulnerability discovery within the security reputation factor group and contains factor groups for SR and SAP

variables, illustrati cepndedustysreputatienr i abl esd direct influen
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3.7Variables

Most security assessment tasks for external security analysts involve RE, /lsichlogous to performing
product development backwards. Application of the definition for a project to endeavors with vulnerability discovery
related activities is a natural progression because persons routinely performing RE and security asses@smiatean

the effort involved in a weltlefined assignment. As with a project for a development effort, security assessment tasks

with a security assessment profi{8AP) have variables (e.g., those defining resource quality and availability) that
influence schedule, cost, and technical performanciewise, SR characteristics (e.g., software size, availability of

design informationgr anti-tampering features) would also influence the rate of vulnerability discoveries over time.

Numerous variables infence vulnerability discoveryand choosing the appropriate set of variables enables
the description oény SR and SAP combination from an external perspective. Thus, for examplesidsclspecifies
an elicitation scenario as having asktariablevalues that defines@R and SARor the postrelease security assessment
of a notional software system similar to a waowser. When experts have an explicitly defined SR and SAP
combination included in the elicitation scenario, they can better estihwatethe variables influence vulnerability
discovery over time. These variables, introduced briefly via hypothetical examplable3-3, are listed by typéi.e.,
age, cost, complexity, SR information securgtize/scope, security mechanisms, process, ROI, resource availability, and

resource qualifyand provided with the corresponding reasons that support their selection.

Table3-3: Research variable overview

Type Hypoth_etlcal examples supporting selectiond with References
reasoning
A Levels of code-reuse between release cycles or the number
ge, . -
. of new features in a released both influence the amount of
Size/scope
RE necessary
Cost Limited budget for personnel, tools or test unitsd each
influences performance
Availability of source code, design information, or binary (Eilam 2011; Collberg
artifactsd all influence the amount of RE necessary and Thomborson
Information 2002, 735-746;
security Binary artifact cleansing and obfuscationd each influences Samuelson and
RE performance Scotchmer 2002,
1575-1663)
. . (Gibson, Goldenson,
Process Use of an established processd influences performance and Kost 2006)
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Type Hypoth_et|cal examples supporting selectiond with References
reasoning
(M. N. Gagnon, S.
Dynamic access (a.k.a. debug) levels or the presence of Taylor, and A. K. ,
. : . ) Ghosh 2007, 82-84;
Security anti-tampering features on products running the softwared Collberg and
each influences performance Thomborson 2002,
735-746)
Potential annual unit sales or customer exposured each
influences resources applied
Pro<|:.ezsor architecture market shared influences resources (Bambauer and Day
Return on applie 2010, 1051-1107; van
investment Monetary compensation for vulnerability disclosuresd Eeten and Bauer 2008,
(ROI) influences resources applied 1-69; Anderson 2001,
Monetary compensation from the exploitation of usersd 358-365)
influences resources applied
Criminal penaltiesd influence resources applied
. o (E. J. Chikofsky and J.
Complexity System or software complexityd influences performance H. Cross 1990, 13-17)
Coding Type of development languaged influences RE performance | (Eilam 2011)
Language
Software size (as measured from disassembled or
decompiled binaries, or original source code)d influences (Howard and Lipner
Sizelscope performance 2006; Anderson 2001,
Proportion of software size that is security sensitived 358-365)
influences performance
Availability of analystsd influences performance
Resource Levels of shared security assessment CPU resources
I availabled influences performance (Ozment 2007, 6-11)
availability
Availability of equipment capable of natively executing the
softwared influences performance
R Analyst experience or skill leveld influences performance (Eilam 2011; Ozment
esource Tl
uality Analvsis tool litva infl ‘ 2007, 6-11; Weiser
q nalysis tool qualityd influences performance 1982, 446-452)

To enable the description of any SR and SAP combination, the numerous variables influencing vulnerability
discovery are nowlescribedrom a perspective that external to softwarenakes. First, their notation defines SR and
SAP combindgon e ® ® E ® ande ® ® E @ | thateachrespectively represent
covariates inbaseline and arbitrargcenarios desibing the postrelease security assessment of notiosaftware
systens. For each variablgy in o, where’Q plthE fé, Table 3-4 includes pertinent details such as identifier,

description, type, baseline value(s), and its corresponding metric unit. Mostsef Yheiables are reasonably self

explanatory and, in the interest of brevity, elaboration is provided using footnotes only when necessary. Generally, the
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baseline values were chosen to either ensurezeom discoveries over time or to control the effdodén confounding

variables.

Table3-4: Select variables that are pertinent to security assessment

ID Description Type Egziég)e Metric unit
. -

o % (p.ercent) of functions reused from Age 25 %
previous release

o Softwgre product lifecycle phase Age Growth Categorical
(see Figure 1-6)

® Product unit retail price Cost 10,000 Uss

® Software unit retail price Cost 5,000 Uss

. % of functions in structural .

0,

w complexity levels 1-4, 21 Complexity 10, 20, 40, 30 %
. — ,

o % of fungtlons in |nforr1212at|on flow Complexity 10, 20, 40, 30 %
complexity levels 1-4,

. Central processing unit (CPU) . i —

® complexity level 1-5, 23 Complexity 2 1-5 rating

. Software system virtualization . .

® complexity rating 1-4, 2 Complexity 3 1-4 rating

. Software system concurrency . .

() complexity rating 1-5, 2 Complexity 2 1-5 rating

o % of functions with source code Information 10 %
available security 0

W % of functions that are cleansed Isrg‘glrjr:iwtz;l/tlon 25 %

o Publicly available % of design Information 25 %
information®” security 0

2L Function structural complexity as defined by the followingilint est abl e, 0 cycl omati-c compl exi

icompl ex, 0 -5@QGA mamoe ec @rhpl e x2004AGC mpt er or b P r-W0ifMcGabeClB76s cor e 1
308320; Software Engineering Institute 1997)

22 Function information flow (IF) complexity as defined by theldaling: 1-IF4 score, p T 2-IF4 scorep T p Tt
3-IF4 scorep m  p T 4-IF4 scorep 1 p 1 (Henry and Kafura 1981, 51818; Shepperd 1990; 1)

23 CPU complexityas defined by the following:-gireater than 64it multi-core; 264-bit multi-core; 332-bit single or
multi-core; 416-bit; 5-8-bit

24 All variables were constructed with ratings such that the highest rating would result in the most discoveriesa This is
methodology constraint necessary for the second phase of the re&&asel et al. 2006, 15777).

% Software virtualization complexity as defined by the followingnli | t i pl e guest -QU8sH®@Siian a host
host OS; 3host OS; 4no OS;

26 Software concurrency complexity as defined by the following>150) processes;-B0-150) processes;-@1-50)
processes;42-10) processes; Levelo concurrency (i.e., 1 process)

27 An open source product defines 100%; practitioners must estimate everything else relative to this condition.
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ID Description Type Saalieel(lgf Metric unit

. Publicly available % of design Information

W : . . 25 %
related binary artifacts?® security

W % of functions that are obfuscated Informatlon 25 %

security

o % of functions developed in Development 5 %
assembly language language

® Security assessment process?® Process Incomplete S,;;?]mety level

; FTEs®!

o Security assessment personnel Resource 10 40 hour / week
effort30 availability f:)er FCT)lIJEr) wee
Available shared security Total CPU cores

. assessment CPU resources Resource .

© g - 100 (available 24*7
(separate from individual team availability hour / week)
member PCs)

o Total product budget available for Res_our_c_e 30,000 US $
the security assessment availability

o Available equipment capable of Resource 11 2 Total units
natively executing software availability

. Average assessment team Resource

® experience with product technology | quality 12 Months

® Security assessment tool quality® qRue:"ci;rce 3 1-5 rating

28 For example, softwarmaker binaries (i.e., used in productionneaintenance) that are not included with the product
release

2 The following security assessment process area capability levels are defined using the capability maturity model

integrated (CMMI) for development (continuous representatio):iln ¢ 0 mp Ipmdess ordpartralomplementation

of an assessment processfip er f or med, 06 accomplishes security assessments
fimanaged, 0 security assessments are plaodefli aealpokcx genoted i n
for security assessments is tailored, using guidelines, specific for each assessmer{Suftyeate Engineering Institute

1997)

% In constructing the dtitation scenarios, the baseline level for this covariate was intentionally elevated to ensure
discoveries would occur (modulation is only possible when expected baseline discoveries over time are greater than zero).

31 Full-time equivalent number of persoel

32 For the baseline, the personal computers forlETEs @ ) are capable of natively running the software and there
is additionally one product unit available.

% Tool quality is defined bythe available RE tool value, with respect to averagesdismbly and decompile task

effectivenesg% correct),completenesg% complete)and completion speg@ompletion time) The effectiveness and

completion areas use the following rangedi ¥ e r y  R0%)12-0 p ¢ 0 r-40%)( 3210y 0 0 d-60%) 4f0v e r y
goodes0%)atds5ii de a100%).( Gofpletion time uses the following scaldi ¥ e r y s | ¢2afids | (ohwodu r s )

(tensof minutes)3-inor mal & ( s edviiefraasit omi(nt uetaesk5fovf e rsye cfoansdtsd (several secon
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Baseline

ID Description Type value(s) Metric unit
o Security asses;rrlstint average Respurce 3 1-5 rating
personnel quality quality
W Potential annual unit sales ROI 1,000,000 ;J::f sold per
® Processor architecture market share | ROI 96 %
W Potential software-maker rewards ROI 20,000 uss$
® Potential black-market rewards ROI 0 Uss
® Potential malware profits per install ROI 0 Uss
® Potential criminal penalties ROI 0 Prison years
® Potential legal cost liabilities ROI 0 Uss
. Average number of users interfacing Users per unit
® with a product instance each year ROI 1,000 per year
. Average number of user security User
() " . ROI 52 transactions per
sensitive transactions each year
year
. Level of dynamic access to . .
w artifacts® Security 4 1-5rating
o E[))easslgn anti-tamper security rating 1- Security 4 15 rating
® Total number of functions Size, scope 1,000 Functions
. ; ,
o % of_fynctlons that are security Size, scope 40 %
sensitive
® % of functions in size range 1-4, ¥ Size, scope 10, 20, 40, 30 %

1. The former is defined by i€alendar weekimeintervals ¢, M, fora pltf8 A

30), [30, 40), [40, 50eeks).

34 Security assessent average personnel quality is described as the team average personnel skill level (rated per the

Cumulative vulnerability discoveries, 0 orG 1, will be intervalgrouped by timgo, and assessmetitme,
v (i.e.,[0,10), [10, 20), [20,

The latter is defined by equivaleaturity assessment timé, t, ff, for 2

Dreyfus scale)whichare:ii Novi fiddéd anced H€oimpreefrmg D cdi-BEX p@reHusd 5
2004, 177181)

% The level of dynamic access to artifacts is defined as the level of software control when executing on target(or target
similar) hardware, and the levels are categorized as follivasne; 2partial cebug control on targedimilar device; 3

limited privileges (i.e., user mode) on target, software debugger availafud; grivileges (i.e., administrative user
mode) on target, software debugger available; ahdlprivileges, external hardware conkfor debugging on target.

% Design security effects in response to tampering detectre rated as followsl-failed, unr e pai r abl e
o n | y-impaised, anrepaaaple; Faiedj rgpaitable witl? significantssociated
costs/delay; 4mpaired, repairable with some associated costs/delay;-aedlgible effect or repairable with negligible

fbrick,0

or useful

associated costs/delay.

37Rated per the following function size ranges in assembly language lines of code (ALSIT)0Q with median=1250
ALOC; 2-250-1000, with median=750 ALOC;-830-250, with median=200 ALOC; and %50, with median=40 ALOC.
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plth8 A v (e, ® OYOX m 0 'Q'Q,@r[0,4000, [4000 8000, [800Q 12000, [1200Q 16000,

[1600Q 20000 SA hours wherew is defined latein this Subsectior).
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Chapter 4. Methodology

This chapter first introduces key concepts for the methodology and then provides the details in four subsequent
parts. The approach fundamentals for eliciting expert judgment and performing Bayesian analysisdee im®gction
4.2, datagathering details are present@dSection4.3, Bayesian analyses of VDM techniques are outliime8ection

4.4, and their implementations within MCMCBayes are introducefdntion4.5.
4.1Introduction

Historically, the counts of postlease vulnerability discoveries have varied over time, and previodest
have uséddbdxblteckhni ques to descr3RierdSAM(i.es, onp sofiware predocband f or a s
its associated poselease environment)Howeveryvulnerability discoveryor differing SR and SARombinations (i.e.,
all the postble types of software and their pagtiease surroundings) depends on many factors. As well, the application
oftimed e pende rto,x 0 cue ari v ar i @ddietiomia arldtiarssR and SARbrebinations of interest

i to those using VDM tedfiques The selected class of multivariate modais now introduced

These models perform scaling perturbations tima-dependentbaseline function (seeigure4-1, uppetleft
side) using parametric modulation (see the sdmeer-left side). Model justification is supported by augmenting a
performanceweighted average model for discoveries in a sir@feand SARwith the inclusion of a new capability that
parametrically scales a reference outpwrhich stems from modelinghé baselineSR and SAR per an input set of

variables describing the arbitraBR and SAR interest.

The general equation for modeling timeanvalue function IVF) in the'® SR and SARombination,e , that

represents the corresponding average discoveries over timgiia., 00 ohe ), is
Qoese Q0 d e 8 15

The two terms in the equation ai@ 0 , which epresent: 1) the baseline function for assumed-zgso average

discoveries over time in (i.e.,O0 o ;and 2) a modulation term, e . Equation T® provides an estimate for
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00 ohe ine byperturbing the baseline functiofQ o , with thei e scalingfunction®®. Notably,i e uses the

vector of variables to describe tB& and SARombination of interest arstalesQ 6 so that it become'§) ohe s

| also note that using Equation® to generatefte ratio of discoveries betwe&R and SARombinations

to e , while constraining e Ttin the ratio set construction, simplifies to

Qohese i @
Qoeg e

5¢

8

(Soyer and Tarimcilar 2008, 2657881t is important to realize that in these ratios, the baseline terms cancel.

Conseqently, there is no dependence in Equatio® one or the timeo, and this facilitates a twphased
methodology approach. Phase | elicits the baseline SR and SAP dataetroduced in Sectio#.3.2, and performs
"black-box" modeling of the phenomenon in a baseline SR and SAP (i.e., it nitdels Phase luses results from
Phase Iglicits the multivariate datasef 7 (introduced in Sectiod.3.3, and supports "cledsox" modeling of the

phenomenon for arbitrary SR and SAP combinations (i.e., it mddél® s , defined by Equationt§ ).
4.2 Approach fundamentals

When predictig rare events, it is appropriate to choose the subjectivist, or evidential, view of probability

(Samaniego 201(nd to perform data analysis using the Bayesian approach.

At the highest level, this twaphased methodology approach performs a general sequence of elicitation and
analysis steps for each phase. These include elicitation preparation (E1), elicitation execution (E2), expert calibration
and elicited dat@leansing (E3), étited data aggregation (E4), empirical dgtthering (DG), and Bayesian analysis
(AN1-10) using all the data. The centerFafiure4-1 depicts this methodology sequence for both phatesght side

details the analysis steps.

3 This abstraction loosely generalizes the modulation notion fi@ox 1972, 5566; Soyer and Tarimcilar 2008, 266
278)to all the baseline functions.
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421Cookeds method

Because the data for discoveries over time are scarce, structured expert judgment was elicited, based on the
Cooke classical model (CCM) approat@ooke 1991)to provide a dataset that enables estimating an informative
Bayesian prior (Phase 1) and usi mehodpnogidesrationalicensensusirttte model (|
exploration of problems involving deci s(ConkeamliGoossers,des with @
L HJ 2008, 65%674). The stuctured, experfudgment elicitation process associated vitb o k e 6 s (Cooket1894)d
for gathering data comprises elicitation preparation (E1), elicitation execution (E2), expert caliaratielicited data

cleansing (E3), and elicited data aggregation (E4) Fsgere4-2).

El, Prepare elicitation
for gathering dataset

|

E2, Execute elicitation
sessions to gat her dataset

|

E3, Calibrate experts
and cl eanse dat aset

|

E4, Aggregate
dat aset

!

T

Figure4-2: Expert judgment steps EB4

E1, elidtation preparationconsists of the detailed design, development, and verification of the elicitation
methodology, including necessary support modules (e.g., scenario details, elicitation questionnaires, assessment
exercises, etc.). A pilot elicitatiorssion is typically conducted to provide an early evaluation of this elicitation material,

which may result in some of the materials requiring subsequent refinement.

E2, elicitation execution, is the expgutdlgment workshop that uses E1 materialg#ther relevant, expert
knowledge in a structured manner. For every workshop activity, experts receive instructions and subsequently perform
elicitation tasks independently. In executing these tasks, they provide information with regard to datagif o

cleansing, and data aggregation. Ebo o k e 0 s, alingata s eelitited in a poirdstimate format that specifies a
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N N N, set of quantiles that contribute to defining a distribution (i.e., percentiles that divide the ifitpbab
space into four bins, séégureC-1in Appendix Q. The corresponding distribution extremdk,, andN  derive
from the complete expert daset (i.e., N N fN , from all the expertsfCooke 1991) Experts specify point
estimatesfor the specified phenomenon (e.g., expected vulnerability discoveries in a time intéovabech of

N AN BN .. To enable E3, experts also answer a series ofisemda.k.a., calibration) questions by providing
another set of corresponding poegtimates. Under CCM, these seed questions, each having known answéos (
the question® pton) in quantitative form, support expestore calibration (i.e., generation of calibration scores) and

elicited data cleansin@Cooke 1991)

E3, expert calibration and eifed datac | eansi ng, weighs expertsd opinions anc
how well each specifies the distribution peegtimates for the calibratiequestions posed to them in E2ooke 191).
The CCM sequence assesses individual, exgatimation performance againstthe, |, E, . answers and generates
a normalized aggregation weight for each expert, thereby ensuring a data combination that emphasizes the results from
the experts who performed well in the calibration exercises. The computation of svegghtts from two scoring
measures and a qualitgvel cutoff. The first of these, the calibration scaieQ (seeAppendix Q, for the experiQ
measures how well the expert specifies answers to the sestians. The second measure, an information stdite,
(seeAppendixQ, assesses the same -esktmatesforthephenemenon of intergstandisderikeel poi nt
by averaging all of the expr t 6 s i n d-iten,iindotmeation scares@ND (seeAppendix Q (Cooke 1991) The
quality-level cutoff, e, is determined numericallfCooke 2008, 77577) and defines a factor multiplied against each
weight (le.,p @ mif@ aandp @ potherwise) that enables the removal of all data from those experts whose
information does not meet minimuguality threshold{Cooke and Goossens, L L H J 2008, 4&¥#). The global

weight for the expertQ is then
0 Q p B QIOQH 155

(Cooke 1991) For performance comparison, two additional types of aggregation weights typically accomp&Ry

Although the item weight for the expefd is like0 'Q, it rests instead on thindividual, seedtem scores or on
0 A p W Q JOTTh 18

(Cooke 19918 Simple averaging generates the equal weight for the expétit of O experts), or
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olo

(Cooke and Goossens, L L H J 2008, 6/A).

In E4, the final step elicited data aggregation, the datggregation weights are computed and then used to
combine the cleansedhta of interest into one aggregate probabiliistribution for each of the elicited quantities of
interest. Becausethe aggregate data then exists in probability distribution form, a final simulation step is taken to

transform the data into point estiteg® for the elicited quantities of interést
4.2.2Bayesian analysis

Bayesian analysis for a model generally performs the following nine stepBi(sge4-3) . I'n AN1l, HAAssume
model form, o the fertQDaH asg t that includesiserhe fundiofOm® , wherem represents the
set of model variables, s i denti fied as the candidate for the -analysis.
v ar i aibitlaleksowlédge of the phenomenon isad to specify the joint, prior distribution for the variables in the
model,“ ® , where* O generally denoteB i O for functions of@. I n AN3, fADetermine point est
distributionhypesp ar amet er s, 0 poi n trhypesdaiametets & she prior eistribetions, wsagriorf o
knowledge about the phenomenon (eg.,q elicited from expert opinion that is a subsetgf | n AN4, A Devel op
model 6s generic joint |ikel i hoevelopedflmsst if)o‘qu@dwmcﬂniethé i kelihood
Bayesian notational equivalent (changing from a functiof t one of@) for the probability of thelata given the model
variables | n AN5, fiDevel op model 6s ¢ ¢helkelihood fynaiionmstcompioed withthe or di st ri

prior distribution to construct the generic, joint, posteri:

®The MATLAB fdPiecewiselLinearo distribution supports simulat
this function, the distribution poirgstimates require slight manipulation (i.e., adding of minute values) to ensure non
zero values fora&ch of the specified quantiles. Also, see Apperdi

401 chose this approach to faitéite easier model construction because some choices for prior distributions make model

construction more difficult. For example, if one were to use the linear regression model, the typical choice for a prior

distribution would be MVNGamma which yields he conjugate posterior that is also MM@amma. This symmetry

obviously breaks when choosing alternate prior distributions with this model, such as the piecewise linear distribution

that is generated directly from the CCM approach. Furthermore, the piegeav | i near di stri bution isnét
by the MCMC samplers used.
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flasgr O @
Lfilasy 0 m Xm

@3

®

8 flasy O mh ¥

(Robert 2010%. | n AN6, fCustomize post e(hdrepthe ptioosulsset afithe dafplgeisdat a, 0 t he
excluded fromy as it is represented By @ ) is used to tailor (i.e., perform term expaosi the generic posterior. AN7,

iGenerate point estimates f od, demxedse dre reabzediedhbritheosgh analyticai nt est i m
derivations oby generalizing samples fromz (e.g., using either the pridrased meam O*“ , or the posterior

based mearm O @sp ) . In AN8, fAGenerate model predictions using
achieved by insertin@ into the stochastic model and then generating pdoposteriorbased predictiongyr samples,

from the stochastic model . Finally, in AN9, AValidate mode
model s, 0 prediction eval uat i onodelpredigtiordperformankecandlidate madelent i fy cr i
output using the criteria. Furthermore, once additional information is available, sequential analysis becomes possible

because the posterior results provide the prior distribution for a subsequent round of modeling using the newly arrived

data.

“Where® me ampg ofportional to. o
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Figure4-3: Bayesian angbis steps ANJAN10

Another advantage to using the Bayesian approach for analysis is that results from multiple models may be
combined to produce averaged model prédns'2, In AN10, fiGenerate (sebitoanfjed model ¢
Figure 4-3), posteriorbased predictions are generated by averaging the performagighted predictions from

individual models.Bayesian modl averaging for this application generally uses
0 Qusp 0 Q) hr 0 B,sp h g1

to predict the averaged, posterimased observables, over modelst  pltf8 fv, by performancaveighting the same
from modeld ; using0 1 wd 4 ﬁrr with its corresponding posterior model probability,

0gqd 0 :

- &
B 0O ibd i

42 BMA has also been used for modeling software reliabilarishvili and Hanselmann 2013;8); however, my
application was developed independently.
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(Hoeting et al. 1999, 38217). It is typically assumed that i 0 * - (Fragoso, Bertoli, and Louzada 2017, néd

this results in0 i 0 ST % Thus, the posterior probability for each model given the data can be
I

approximated as its normalized marginal likelihood.

The marginal likelihood of the data given mode],

Oird, ., fled:hr O @0, Xm,h P 1
where®m is the set of parameters for mode}, may be estimated using the powsssterior approac{Friel and Pettitt

2008, 589607) (see ApendixF.1).

Depending on the assumed form lofi 3gp and the prior distribution“ @ for the model variablesthe
posterior distributiot ® | , orits full-conditional distribution 'O hy for variablesQ plgh8 h(Gilks 1996,
75-88), may not be analytically tractable; thisaee of the main drawbacks to Bayesian analysis. Fortunately, Markov
chain Monte Carlo (MCMC) techques(see Appendi¥.4) provide a simulatiofbased alternative to analytical solutions.
The key element of MCMC is the use of a specially constructed Markov chain that retains a stationary distribution
equivalent to the desid posterior distributioffRobert and Casella 2004)These methods generally provide samples
from the fulkconditional posterior distributions, which are proportional to their trutibligions, and the subsequent

sample moments provide poiats t i mat es for their corresponding variablesd di
4.3 Data gathering

The sources used for degathering are discussed three parts: Subsection4.3.1 describes theexpert
calibration; Sub-section4.3.2 explains theelicitation of expert judgmenin the baseline scenari@nd describesthe

empirical data obtained from the NyYBndSub-section4.3.3explains the approach used for eliciting multivariate data
4.3.1Expert validation and calibration

Expert validation is necessary for data cleansing of expert opinion data, and expert calibration siaggorts
aggregatiorinderthe Cooke classat model. This susection respectively outline the methodology details for validation

and calibration.

The qualitative assessment consists of a single questionnaire that queries formal education, relevant work

experience, and a participant sefisessmd. Table4-1 provides the questions supporting the assessniathe x per t 6 s
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experience levels assessed using thenswersto validation questions §1-8. The researcher determmé the
partici pa totvQis8warmrgsgheidesignatioras an expert Those participants nattainingthis designation

or providing less than competent saffsessment scores\tQ9 will have their data removed from the dataset

Table4-1: Experience questions

ID Question
What formal higher education have you completed (include degree(s), with associated major and

Vol minor)?

V02 How many hours of professional training have you completed which is directly related to software
security, software reverse engineering (RE), or vulnerability assessment?

VO3 How many hours of professional training have you completed that is directly related to software

security, software RE, or vulnerability assessment?

VQ4 | What processor architectures and assembly languages are within your technical expertise?

VQ5 | What higher-level software languages are within your technical expertise?

How often do you currently perform software RE or vulnerability assessment on assembly

vQé language artifacts? (daily, several times in a week/month/year)

How often do you currently perform software RE or vulnerability assessment on higher-level
VQ7 | language artifacts (e.g., C or Java source, or decompiled code)? (daily, several times in a
week/month/year)

Of the Dreyfus model of skill acquisition categories, which ones describe personnel you have
VQ8 | worked with (including yourself) in software RE or vulnerability assessment? (Novice, Advanced
beginner, Competent, Proficient, Expert)

Classify your own personal skills at software vulnerability analysis and RE, according to the

Va9 Dreyfus model. (Novice, Advanced beginner, Competent, Proficient, Expert)

The supporting material includes two netwdrasedcliens e r ver model archited®t ure appl i

and A Ch a*(Cecaate et &l.02014, 104D74) The fir s tFigurdd@)ais asanple game irsvehieh

players compete by racing carsheTJAVA language implements the client application that is obfuscated using opaque

predicate methods; it consists of 14 classes and has 3.783 KLOC (thousands of lines of code) when d¢Cengzted
et al. 2014, 1041074) The second,Figir€bpais £dimple design prowdmg the functionality for
multiple users to have shared text based conversations. The JAVA language alsceimgplih@ client application; it
consists of 13 classes and has two bi naenagmingmatheds (verson
contains 1.030 KLOC when decompiled) and separately using opaque predicates methods (version364ains

decompiled KLOC)Ceccato et al. 2014, 104074)

“Ceccato et al. developed iiCa(CeRamtoetal 2003,236)a case study

4 https://sourceforge.net/projects/j¢ha
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https://sourceforge.net/projects/jchat/

Fuel Speed Laps /%

Figure4-4. CarRace

General Messages default | Room 4 Availiable Rooms
Welcome to default online Users. default
REuben : 6:54 PM: Don't Panic! REuben
Room 3
Room 2
Room1

“ Send

Figure4-5. ChatClient

The practical assessment consists of two tasks Tedde 4-2) speci fic to the HAChatClie
obfuscated using opaque predicates. In the first task, experts perform RE to answer a questian ai he fAChat Cl i ent
applicationds design. The second task requires the additi
requested design feature. All experts must answer corractythe practitioners record completion times. An inairre
answer or a completion time greater thannéiButes results in practical assessment disqualification for the participant

and their data being removed from the dataset.
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Table4-2: Practical assessment exisecquestions

ID | Question

T2|AiWhen a new user joins, the |ist of the displ g
code that updates the list of users when a new user joins (report the class name/s and line number/s
with respect to the source)o(Ceccato et al. 2014, 1040-1074)

T4 | iMessages are sent and displayed with the timestamp that marks when they have been sent. Modify
the application such that the user sends messages with a constant timestamp = 3:00 PM.d(Ceccato
et al. 2014, 1040-1074)

Assessment execution proceeds with the practitioner providing a computer to participants with the Eclipse
JAVA development erivonment, decompiled source code for the client application, and the server binary preinstalled.
As not all persons are familiar with every tool, the participants receive brief instructions explaining how to perform
common tasks within the Eclipse JAVAddopment environment, such as starting the JAVA server, performing text

searches, and traversing the client application in the debugger.

The practitioner calibrakwor k shop participantsdé project estimation sk
through measuring their ability to estimate RE task performance of others. Recent research by Cec¢&tecettd. et
al. 2014, 10441074y i nvestigating RE perfortnalniceentoon JtAhVeA faCaprl R accaetdi oanms
information to generat&2 calibration questionsCalibration activitie® require each participant to estimate the RE times

for the tasks listed ifable4-3.

Table4-3: Calibration questions

Actual timefor | J jgit, b p Ml qm uun o <

ID Question correct j'—& L L
responses (r ) & et > -]

Car fin order to refuel the car has to enter the box. | Min 2

' A red rectangle delimits the box area. What is . pPo
T1 . R R Median | 6.5 Lk
OF; the width of the box entrance (in pixels)?0 Cp
(Ceccato et al. 2014, 1040-1074) Max 60

Car, firhe fuel constantly decreases. Modify the Min 00

T4, application such that the fuel never Median | 8 —

OP decreases.o(Ceccato et al. 2014, 1040-1074) |7y, 28 P X

Chat, |iMessages going from {Mn > prt

T1, IR | use an integer as header to distinguish the Median | 20 Cw

45 Participants complete the calibration activities prior to the practical assessment activities and separate binaries
(obfuscated using a different algorithm) form the basis of the calibration activities.
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Actual time for
ID Question correct
responses (+)

type of the message. What is the value of the
header for an outgoing public message sent

by the (€dcdate etal.2014, 1040- Max 50
1074)

fMessages are sent to a given room, if the Min 4

user is registered in the room and if the

Chat message is typed in the corresponding tab. Median | 11
' | Modify the application such that all the

T3 R messages from the wuse

without the user entering the room.o(Ceccato | Max 20

et al. 2014, 1040-1074)

| e

°
e

Several necessary assumptions, that generalize the previous experimapthgetjuestion scenario3hese
scenarios describe experiments whemmputer science graduate studeptsformed RE exercises on obfuscated
decompiled source codeParticipantsare instructed to assunadl subjectsin the experimenhad: academic JAVA
programming experience, no applied RE experience, and a software security background limited to acadeesc
Participants are also provided with ttedeused in the experimelito assist irassessing the level of effort) ati ratio

of students correctly completing the taskt ofthe total numbe(to assist in skill estimatiqrseeTable4-3).

The researchahenelicits correctactivity completion time estimates for the fastest student, slowest student,
and group average. Participants respond wusinigbledhe CCMOSs

Table4-5 andTable4-6 containthe corresponding instructiomsid Figure4-6 provides an illustrative example

Table4-4: Calibration question answer format

Fastest individual time | Median group time | Slowest individual time
5%= 5%= 5%=
50%= 50%= 50%=
95%= 95%= 95%=

Table4-5: Expert instructions for the calibration exercises

For those completing the exercise successfully, estimate the fastest individual time, slowest individual time,
and median group time for each task. Provide 5%, 50%, and 95% threshold estimations for each answer
(in the probability distribution form explained below). Ensure that your estimates account for all possible
time values.
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Table4-6: Calibration aswer format explanation

Imagine that subjects perform 100 independent, but similar, analysis experiments. Each of these 100
experiments has values for the fastest, mean, and slowest times. Grouping these values results in sets for
the fastest, mean, and slowest times (with 100 values in each set).

Separately for each set, assume subjects rank order values and then assign these times into one of the
four bins above. Then, bini contains the 5 fastest values, binz contains the lower middle 5%-50% values,
bins contains the upper middle 50%-95% values, and bins contains the 5 slowest values. Consequently,
the 50% value (which divides binz and bins) defines the mean threshold, the 5% value specifies the upper
threshold of bini, and the 95% value describes the lower threshold of bina.

Low . Hi gh
M n 506 Medi an 506

'y l -
8B LBLTILRLB—B—8_—

N | ]

Max

-

bi ny bi n, bi n3 bi ny
Figure4-6: Calibration module answer format example

432Phase I|-boRb)ack

Details for the Phase | datmthering (see the grey B84 and DG boxes iRigure4-1, center)i that supports
afiblack-boxd model forsimulating cumulativadiscoveries in the baselirf®@R ard SAP environmerit are now detailed
in two parts. The elicited data is explainedSyb-section4.3.2.1 andSub-section4.3.2.2describes the empirical data

gathemg from the National Vulnerability Database (NVD).
4.3.2.1Elicited data

The overview of analysis preparation details for the ba:
to gathery (i.e., EX4 and DG) which contains the corresponding expeaétoveries (dependent variable) over time
(independent variable), given and (defined below)orO( ose i, is as follows In E1,scenarios are constructed
that describe five, assumed baselBfe and SARombinations for software cqmarable to welbrowsersite., o ff ,
for which the specified total vulnerabilfitpewifftesent in ¢
respectively. Table4-8 and Table 4-9 contain he corresponding instructions aféjure 4-7 provides an illustrative
example. For E2, the elicitation sessions for expert calibration and baseline SR and SAP data are performed and the
experts provide answets the calibration questionssing theprobability distribution format inTable 4-7, and for

00 6ge ff inthelO-calendar weekimeintervals defined by, hd, fora plth8 A vin each scenarioln E3,
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the researcher must specify CCM inputs that define the intrinsic rddgmd thecalibration power” , “6. Then,the
baseline SR and SAP datsecleansed and thexperts are calibrated usi@o o k e s met hod wi th
the calibration data. In E4, performanbea s ed wei ghts ( c o mp u t(@odke 1991)areguse@ oo k e 6 s

aggregate the baseline SR and SAP data from all the remaining experts into one dataset. Then, data point estimates for

t he

00 o i are generated (using the aggregated distributions) for each time interval defined by the baseline scenarios.

For each interval, the researcher uses these point estimates with piecewise linear distributions to @XtGesaBples

from the aggregatedlicited baseline SR and SAP data distributiofibis provides five point estimates specifying

00 o It foreach e ff pair.

Table4-7: Data elicitation answer format farsingle SRandSAP, with example data entries

% . %
Interval ?Ieast) Median ?nswost)
00 oy 0 o9 0 1 3
O0 og U0 o9 1 3 5
o0 0g 0 o9 2 4 7
O0 oy O o9 2 4 3
o0 0g 0 o9 4 3 1

Table4-8: Expert instructions for baseline SRASAP elicitation

Assume you have an academic software security team performing vulnerability assessment and reverse
engineering in the baseline environment defined

software release. Assume the academic security team performing the work has one licensed copy of the
software and states that additional product units may be purchased using @ funds (without acquisition
delay). Assume that all software in the product is part of the release, to assume that it executes natively
on the available equipment (@ ), and to assume that each team staff member has individually licensed RE
software along with a dedicated personal computer (PC). Assume that all personnel and non-product
material resources defined in the baseline SR&SAP are operationally available throughout the specified
duration and that the product hardware failures are only dependent on the triggering of any specified anti-
tampering features (w ). Assume a random mixture of appropriate vulnerability types amongst the
assumed faults present in each scenario (i.e., [ ). Assume each discovery requires an additional three
hours of static or dynamic analysis to verify the fault and one hour to document.

What would be the discoveries in the following intervals: [0,10), [10, 20), [20, 30), [30, 40), [40, 50) weeks?
Provide 5%, 50%, and 95% threshold estimations for each answer (in the probability distribution form
explained below). Ensure that your estimates account for all possible discoveries and that you follow the
additional rules listed below.

Response rules:

(1) The cumulative sum of interval counts for each point estimate column (5%, 50%, and 95%) must be less
than or equal to 9.

4 This was determinethanually through adjustme of the calibration power input until achieving maximal virtual DM

performancgCooke 2008, 77577).
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(2) The cumulative sum at each sequential interval for the 5%-point estimate column must be less than or
equal to the 50%-point estimate column counterparts. Likewise, the cumulative sum at each sequential
interval for the 50%-point estimate column must be less than or equal to the 95%-point estimate column

counterparts.

Table4-9: Baseline elicitation module answer format explanation

Imagine that subjects perform 100 independent, but similar, analysis experiments. Each of these 100
experiments has values for lowest, mean, and highest number of discoveries per interval. Grouping these
values results in sets for the lowest, mean, and highest number of discoveries per interval (with 100 values
in each interval set).

Separately for each set, assume subjects rank order values and then assign these counts into one of the
four bins above. Then bin: contains the 5 lowest values, binz contains the lower middle 5%-50% values,
bins contains the upper middle 50%-95% values, and bins contains the 5 highest values. Consequently,
the 50%-value (which divides binz and bins) defines the mean threshold, the 5%-value specifies the upper
threshold of bini, and the 95%-value describes the lower threshold of the bina.

ETN(t1)]-EIN(to)]

— 8 <«— Max
bi n4£ .
Hi gh
By,
£
bi ns< 8
i<— Medi an
bi n,< %
8
Low
. { 8y,
bi n;
— %<« Mn
|
T T t
0 1

Figure4-7: Baseline elicitation module answer format exdenp

4.3.2.2Empirical data

Bayesian analyses can also include empirical -dathering (step DG) for estimation of the posterior

distributions Unfortunately, public databases for historical vulnerability discoveries over time do not adiptureery

times. Casequently, the NVDeporting times for vulnerabilities found in four popular wdbowsers, gathered by

Nguyen, Massacq014, 11471162) were used as a proxy for discovery tffieAdditionally, most of the 46 variables

47 The suitability of reporting time as a proxy for discovery time is discusseddssacci and Nguye(2014, 1147
1162)
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that define theSR and SARombinations corresponding to the reporting times are not publicly available. Therefore, it

is assumed that the SR and SAP combinations for the five, selected, NVD dataset examples are sinfilat to

Several interesting releases in the NVD dataset merited preparing their data for studix ekamples chosen
for analysis demonstration included releases 3.0 and 19.0 for Mozilla Firefox, 6.0 and 7.0 for Microsoft Internet Explorer,
1.0 for Google Chromeand 1.0 for Apple Safa(F. Massacci and V. H. Nguyen 2014, 114762; National Institute of
Stardards and Technology 201@eeTable4-10). In preparingy from each of these examples, the discoveries for each
release were grouped in -U@eek intervals (identical to those definedSection3.7) over the first 50 weeks of each
release. These values were then altered suchheitresultingr represented the cumulative discoveries (dependent

variable) over time (independent variable) at each interval.

Table4-10: Empirical datasets forumulative discoveriesvertime

Product version Cumulative discoveries
Safari 1.0 [0,0,0,2,2,3]

Internet Explorer 6.0 [0,2,4,5,6,7]

Internet Explorer 7.0 [0, 4, 6, 11, 15, 17]
Chrome 1.0 [0, 4, 6, 16, 23, 30]
Firefox 3.0 [0, 4, 12, 19, 40, 50]
Firefox 19.0 [0, 20, 76, 93, 134, 134]

(Massacci, Neuhaus, and Nguyen 2011,-208; Nguyen and Massacci 201276 Nguyen and
Massacci 2013, 49398; F. Massacci and V. H. Nguyen 2014, 114%2; National Institute of
Standards and Technology 2018)

4.3.3Phasel | ( fboolxeddr

Details or the Phase |l datgatheringthat suppora cl@arboxd model forsimulating cumulativeliscoveries

in arbitrarySR and SAP environments are now presented.

The blue EAE4 boxes irFigure4-1 (centej provide a overview of the steps used to gathef  (a ratio of

two, distincti  p vectors of data defined below)n E1, aset of Q phc v TpairwiseSR and SARcenario¥,
in which each pairwise element defineseahe pair (that associates with ‘O ), are constructed By construction,

these scenarios are relative to the baseline SR and SAP, as well as each other; and across the set, the SR and SAP

8 This ideawasconceptualized while studying the elicitation approach that Szwed (@086, 157177)used to enable
their proportional probabilities model analysis (Note: their approach stems from Bradley &(Beadley and Terry
1952, 324345)and Rulkkinen (Pulkkinen 1994, 116)).
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covariates are varied, and two approadmresused to avoid expert fatigue. First, the study is restricted only to the subset
of variables listed immable4-12, that Ibelieve arehe most influential to discovery events. Second, the set of possible
values for each of these variables is limited to five unique values per variable (also liSeoled-12). In E2, these
questions consisting of pairgé sets of SR and SAP scenados presented to each of thepexts, who provid® 0O

00 o OO0 e ,*orthe expected discoveries (dependent variable) iindependent variable) over teepected

discoveries (dependent variable)dn (independent variablejor every o he atd v Tweeks. Table4-11 provides
an example questicand the instructions are rable4-13 (Table G-1 andTableG-2 in Appendix Gprovide the complete
setof e he ,for'Q phch8 A v Jt E3-4 proceedsimilarly to what was already described in Phase I, to gemerat

the performancaveighted aggregate j ¢ dataset. However, in this case, the data are already provided in point

estimate form (i.e., not in probability distribution form as was the case for the responses to the baseline scenarios).

Table4-11: An example question appearing in one of the scenario sets

. . Covariate Descriptions . 0 0
1000.00 10000.00 | Total number of functions (& ) 100000.00
10000.00 5000.00 | Product unit price (®) 1000.00
300 | - SAtoolquality (@ ) | e
1000 | - SApersonnel effort (@ ) | -
300 | e SA average personnel quality (@ ) | -
4.00 3.00 | Level of dynamicaccess (0w ) | -meeeee-
025 | - % software reused (@) | e
025 - % available design information (0 ) | = -
050 | - % obfuscated software functions (0 ) | = -
050 | - % cleansed software functions (@ ) | = -

Table4-12: Covariate of interest ine he and their values used

ID Description Values (Baseline)
® Total number of functions 50, 250, 1000, 10000,
100000
® Product unit price (US $) 50, 500, 1000, 5000, 100000
® Assessment tool quality 1,2,3,4,5
® Assessment personnel effort (full-time equivalent, or FTE) 3,5, 10, 20, 30
® Assessment average personnel quality 1,2,3,4,5

*Recall from Equationt& that there is no dependencedar e , when elicitingr j -
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ID Description Values (Baseline)

® Level of dynamic access to artifacts 1,2,3,4,5

® Percent of functions reused from previous release (0-100%) 0, 10, 25, 50, 75
® Percent of available design information 0, 15, 25, 50, 100
® Percent of obfuscated software functions (0-100%) 0, 25, 50, 75, 100
® Percent of cleansed software functions (0-100%) 0, 25, 50, 75, 100

Table4-13. Pairwise comparison elicitation instructions

Assume you have an academic software security team performing vulnerability assessment and reverse
engineering in the defined pairs of environments. Assume there are[ v uwvulnerabilities present in the
software release. What would be the discoveries in the interval [0, 50 weeks] for each environment?

In applications, covariate inputs should be normalized to the baseline values and rescaled to their range of
valuesin the questionnaire. Thus, ohasthe following baseline normalization equation for each covai@atepft 8 fe
ine

w0 W .

Y TAamENR TED MW IER

@ p

where the ~ accent denotes covariate baseline normalizations thek" covariate in the baseline environment, aad

isal & scenario matrix containing all defined SR and SAP combinations. Then by construction, this results in the
normalizel, baseline covariate inputs beimg T8 ft and elements in th&), arbitrary SR and SAR being

constrained to the range pfp .
4.4Bayesian analysis o/DM techniques

Here, the Bayesian analygiaradigm transforms ti@as ,or'Q 6, and'‘Qofe s  of each candidate VDM
technique into a stochastic functional form, from which analysts assume that the data observations originate. In other
words, all the model functions, presented later in this sectiadifjna general form that represents the expected
discoveries over time, 600 , into some stochastic distribution or procefss‘s,s»g‘nﬁrr , Where is historical data over

time from the phenomenon of interéahds are the future observables.

This section has-btolxroe eV Dpva 1t e IRma@ mduees Mt and MCMCBayes s

modelingsoftware
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The #bo WaMktechniqueperforms Bayesian model averaging using a-parametric NHPP mod®|
five popular parmetric forms of the NHPP, two common regressioodels,and two wellknown growthcurve models.
These modelsollectively support all the discovery rates illustratedFigure 4-8. The general form of the candiga
baseline models 800N © , or"O o . For further distinction/O oP can denote the same for the temporal
parametric models, having the vector of paramefrahile™© o0 6 , with the temporal stochastic procé®% , can

represent noiparametric models.

For eachmodel| Table4-14lists the meatvalue function (MVF), its variables and their descriptions, the forms
for their prior distributions, and descriptions of hyperameters (sedppendix Ifor the associated prior distribution

hyperparameter values)

S0Where it is applicable, as the Ku®hosh NHPP model requires datasets havingzesn grouped interval data.
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Figure4-8: Discovery rates supported by the individual models

The abbreiations are: onstant discovery rate (CFR), linearly increasing discovery rate (LIDR),
linearly decreasing discovery rate (LDDR), exponentially increasing discovery rate (EIDR),
exponentially decreasing discovery rate (EDDR), single pulse (SP), multiige (VIP)

Table4-14: Vulnerability discovery models

Variables

Variable descriptions

MOdel name Mean-value function . L . Hyper-parameter
(U4) Prior distributions Lo

descriptions
Kuo-Ghosh "0 oo 1, - variable for expected
NHPP (0 ) . 00 1 grouped discoveries in
(1997) 0o ¢ 2 interval 3,7, T
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Variables Variable descriptions
Model name Mean-value function H
U4) Prior distributions VP ]
descriptions
¥ 0 - nondecreasing best
guess set of point estimates
" g0 X over time for expected interval
g Ul 552 grouped discoveries, ¥ T
1= ohw, MY 0 M MmO T
®- confidence in best guess
set, T
Brooks- — - expected maximum
Motley number of discoveries times a
homogeneou ‘ P - proportionality factor between
s Poisson 0 OP expected discoveries and
process (0 ) -0 190 SAP performance, - T
(1980; < sh .
Ozment “ _x 00 & & @, 2 (i)-s ap(i,m i
2006, 25-36) w-rate,w T
Goel- 0 - expected maximum
Okumoto number of discoveries, 6 T
NHPP (0 ) P oh — - proportionality factor
(OC?(06| and ‘0 oP between 6 and SAP
umoto : | erformance, - T
1979, 206- op Q T P
2R11? I “ 6% 00 & o @ &f>- shape, @ O T
escoria “ X006 G @0 diQ-rate,0 mQ T
2005, 14-19) ' '
Goel 65 0 - expected maximum
. number of discoveries, 6 T
generalized S
Goel- o — - proportionality factor
Okumoto P ohhl between 6 and SAP
NHPP (0 ) 0 op performance, - T
(1985, 1411- , . Il - power factor that scales
1423; op 0 P the effectof — I
Okamura, A (fdiQ- shape, & mQ T
Tokuzane, 0% 0w G & G 0 = ’ '
and Dohi “ X "0& & & G mg el
2013, 15-23) “ 1% 00 & 6 b0 e e AT

QN n

2 =1 1 =+ & ho) represents the Gamma process (see AppeBd@)x* me a rdistribéited according t@

52"0¢) & & Gy represents the Gamma distribution (see AppeAd2).
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Variables

Variable descriptions

Model name Mean-value function H
U4) Prior distributions VP ]
descriptions
Musa- 0 1P — - expected maximum
Okumoto [ number of discoveries times a
NHPPS (0 ) TR L R proportionality factor between
(1984, 230- expected discoveries and
238; Ozment p initial SAP performance, —
2006, 25-36) m
Il - SAP performance
degradation rate of reduction
per discovery, I T
“_x 00 a 6 o (- shape, @ Mo T
“x 00 G G G iQ-rate,0 mQ T
Yamadab 0 - expected maximum
shaped b o number of discoveries, 6 T
NHPP (U ) — - steady state SAP
218%{831 475- |0 op performance, - T
Okamura7 é p p B m Tfﬁ) X « P A A A A e o, 7.
Tokuzane, 0x Owaa (.!m (f{m shape~, W MW T
and Dohi “_x 00 & ¢ i wiQ-rate, 0 mMQ T
2013, 15-23)
] I -discoveriesatd T,
Linear B H
fregresg on N A I - SAP performance rate,
or a single .
. i b 1 H
independent . L
variable (0 ) 0 §P | - precision fpr zero mean
(DeGroot (16 error term,f,i T
2005; Y ¢i>-mean, b O
Alhazmi, CEOX O ET G Ghi e b @ H
“R/':'a'z%a(ﬁa”d “1ox Gl adia ofiQ- precision, @ WQ T
y ’ W Y S A 0. ®
219'228) I X "00a a @Q Q Shap?v Q mn
Q-rate, Q m
f -discoveriesato T,
b T H
I - SAP performance rate,
o~ . b H
o JP P rhHb. Io- SAT\P erformance rate
I 10710 TP wli P

second degree factor,
f H

i - precision for zero mean
error term,f,1 T

%3 For the MusaOkumoto NHPP, security assessment tifé.e., SA hours)is used in lieu of calendar time.

50 &1 & chm represents the Normal distribution (see Apperili3).
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Variables

Variable descriptions

Model name Mean-value function H
(04) Prior distributions yper-parameter
descriptions
Polynomial
degree-2 . i
regression ) L uth-Tmean, H © b,
for a single [ xuel O((gm boo b b Qb
independent “r x0¢i 0 @ ahOhQ- precision, ® T Q
variable (0 ) “F X0 é1 6 d mQ m
(DeGroot “ 1 X0 a i -shape, T
2005; n-rate,n ™
Rescorla
2005, 14-19)
I - growth rate parameter
that supports determining the
point of inflectiond —, 0
- ™
I - carrying capacity
Logistic o (r_naX|mu_m population size, or
(Verhulst) P PR, dlscover|es),T T
growth® (0 ) l I - population growth rate
(Yamada, (i.e., SAP performangg rate)
Ohba, and 0 op the}t supports Qeterm|n|ng the
Osaki 1983, point of inflection (see the
475-484; ! 18 T description off above),1
. 0 o}
Alhazmi and p s
Malaiya i - precision for zero mean
2008, 14-22; error term,7,1 T
Winsor 1932, “rox
1-8) ~y oo | CPOHQ-mean, B @ H
N Al A O 9 6 o ’ )y
“;)iladmﬁYTmlﬁ b O b b Qb
e e oy ¢HORQ- precision, & 1 Q
O6¢il aai@ JYmh T T
. n-shape, ™
O€1 a@f Iymh f-rate,§ T

“ X 06 & d i

%5 | ogistic growth issymmetrical about the inflection point.

5%"yYrh d e n o truacatiomibelow zerd
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Variables

Variable descriptions

Model name Mean-value function H
(U4) Prior distributions yper-parameter
descriptions
I - growth rate parameter
that supports determining the
point of inflection 6 —, 0
_IT T
f - carrying capacity
Gompertz o (maximum population size, or
growth®? P T HHA discoveries),] T
0 ) i I -retardation growth rate
(Yr?mada, parameter that slows the
0 blf" and approach tof and supports
Osaki 1983' 0 oP determining the point of
g7|(5'484’ I m 2 18 p inflection (see the description
TOES;;L% off above),f T
and Dohi ' i - precision fpr Zero mean
2013, 15-23; errorterm,f, 1 T
Winsor 1932, oy RO z
1-8) 5 & @D YT - mean, B o H,
“;’sx'q b O b B Qb
T HORQ- precision, ® 1 Q
O€1 aai@ JYmh 0 TF
“Fx N .
vy e RV n- Shapev n m
O€1 a@f Iymh f-rate, ] T

“ X006 & i

Bayesian anakis details for the individual NHPP models are as followgt 60 0 denote the number of

cumulative discoveries at time This analysis of the discrete, countipgpcess form of the NHPPrequires grouped

interval counts for the discovery data 1

man

do 6, 0 o

€, &y fora pMBH intervals, orf

0 0 b 6, £,M2 pdAQ pd- (where the number of datapoinis ,is a multiple of ~ p). Assuming

that [ originates from a NHPP having MVO o'l (e.g.,seed -0 in Table4-14), the likelihood of@ given , that

stems from the NHPPOs p(Cnlrd®rb)isity mass function (pmf)
5. B 04 0 o, n
a G 0, Cog
il msy - % % ™ a2 ®g g
BL B & &, A

57 Gompertz growth issymmetrical about the inflection point.
%8 The continuous, arrivaime form of the NHPP can also be used to model discovery events.
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Then, the posteriedistribution equation,

i 1

BL B" O&Mm O o, M .
@ © - Q% ® 2 > ® 5@k 10

results from using Equatiort & to combine the assumed form of the prior distributior® , with Equation 1§ ¢.
Simulation of future observable8, i @g‘nﬁn- , proceeds by generating samples froMHPP having MVFO o and

using the MCMC derive@ 'O* msp  within,

Bayesian analysis details for the individual regressiongaodith-curvemodels are as follows. Lét denote
the cumulative discoveries at the respective time instander Q pton data points These models alternately assume
that the®) observationQ, for each ofQ pton , originates from theandom variablé O 0P | ,thatincludes

anindependent and identically distributed (i.i.d.) zenean error term from a Normal distribution,
foxges) ¢ G h ] T

with unknown precision (Hoff 2009) To condense, this essentially assumes grstems from the Normal distribution

01 a®OOPH h 8 L
having MVF'O 0P (e.g..seebd -0 Table4-14) and precisioni. Consequently, the likelihood of parametePi
givenpis

n

~ i Tl I
fPisr o Q¥ P 18 @

The corresponding posteridistribution equation,

| 3

~ 1 T 3 ~
Pl 0 o Q%" P 3P Ooin 18 X

results from using Equatiornt & to combine the assumed forms of the prior distributitn® and“ i , with Equation
1& ¢. Gereration of future observables, i ag‘)ﬁrr , proceeds by sampling from Equatiar® v andusingtheMCMC

derivedP O Pspii  andiHu O igpfP  within.
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An overview ofthe BMA model, that combines all ;, for™ phE f0  p mmodels inTable4-14, for the
baselineSR and SAP andn outline ofits Bayesian analysigteps AN17is as follows Herel denote the stochastic form
for these diverse models generally using s g’)ch‘nﬁn- , that isexplained aghe probability of theobservables, or
cumulative discoveriein the baselineover time 3, given model 0 4, 6, and f . The Markow-chain Monte Carlo
(MCMC) basedBayesiananalysis approach for ANT uses  with each individual modeand follows theaveraged

approach for estimating i ® 9hy  outlined in Sectior.2.2

Model choice is then performed as follows. First, the best indivishoale! is determined using Bayes factors,

0’0 18 U

whereO is the null hypothesis model, and whégeis the alternate hypothesis modétffreys 1961; Kass and Raftery
1995, 773795). Interpretation of the BF score follows the guidance provided by Kass and R@fé&y, 773795)
BF=1-3. 2, fAnot worth more t-h@n fap dsairtdiOvbeeon fi sBbAM=0IN0g 8F=3an 42
s t r oThen, tke BMAperformances evaluated againgtredictions from the begtdividual model using measquare
forecasting error (MSFE|Clements and Hendry 1993, 6687). For then  p original data vector, and”Y i
observables matriz (generated fofYparameter samples at every data poiibis generallydescibed as the average of

the sum of squares of prediction error, as measusedy the observablegainst the original data, or

PR n
U YOO,—Y N

0O 3, 8 T8 W
Models having lower MSFE errors are interpreted as performetigib

442Phase |dbokdgdl ear

The structure of Equationt® supports a twgphased approacto Bayesian analysis of thé ¢ |-z @x 0
discovery modelQohe s |, that analyzes thfirst term in 1§ , 'Q 0 , separately from the second terime . This
sectionpresentswo models fori e , detailsBayesian analysis df e , and then outlinekow to use thesanalysis

results with those frorf2 6 (recall Sub-section4.4.1).

This researchintroducestwo parametric formof the scaling terni e in Equation 1® and these are

represented using the general fofivie rﬁ”ﬁ Respectively they eactprovidelinear and exponential modulation of the
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baselinemodelandboth formsuse at ¢ p regression parameter vecfoto relate the influence of each entrysnto

the scaling termThe linear form scales the baselM&F using
"Yol’ﬂ} p " eh & T
and the exponential forfh(Cox 1972, 5566) alternately modulates by using
Yok Q° 8 p

Performing the AN17 Bayesian analysis steps with eitfierm above by means of MCMiS straightforward,
uses the datasgt j  , and @sunesthe expert responses follo®aussiardistributiors (as inSzwed et al(2006, 157

177). For the linear form| use Equationt® 1, letd 'O YO denote the datbor Q phgf8 A v Tandassume

that thee x p erespo@ise tthe @ scenario pair ® he |, is uncertain Thus,| define the randomariable (r.v.),

T h & ¢

having theindependent and identically distributéd.d.) zeromean error ternfrom a Normal distribution

Tox e €1 Gt h o
For the exponential form,similarly use Equationt& p, alternately leti 1 T , anddefine the r.y,
O  De o 78 &1

In both instanced,define flat priors on the elements metmodel parameter vectorand a truncated flat prior (such that

i 1 oni, which is the precision fahe zeromean error term.

For AN8,forecasting of discoveries for arbitrary SR and SAP scenarios proceeds from using future observables

fromthebazlineB MA  mo d e(dlsdseeSub-section4.4.) andt he s c al isn(describednext) dhat is,|

9 Note: modulating the NHPP baseline models using Equati@ p results in the wll-known modulated Poisson
process model .
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combine them usin@quation 1® and can then generate future observables froni@@R andSAP, 3, using the

resulting product distributicf,

legjﬁ.ﬁn'ﬁn'jn' legfln' Q]l(.\)?ﬁn’]n'8 &
So,to generate a sample froEquation T& v, | separately dfain individual samples from the baseline and scaling
function$! andthencalculate their productl can generate future scaling term observats#esfrom
Diwehrjp x0&i1 ayanjkh €00
by settingits MVF, "Ye I’}','f to eitherEquation T& 1or 1& p (respectively the one corresponding to the sampling

approactusedfor* disyr j ¢ )and usinge , 3 andi kuithin.

Steps AN910 for the ficlearboxd model proceed as follows. For ANSe BMA alternative constructed for
"Q 0 is inherentlythe best modedndselection of the ideal scaling functicie [|= is performed using MSFEFor

completenesd mention thastep AN10 does not apply tanalysis ofQohe s here
4.5MCMCBayes modelingsoftware

Per modeling instan¢eéhe powetposterior approach approximates the integral on the right side of (4) using
ideas from path samplin@elman and Meng 1998, 1885)that increase the necessMZMC sequencefrom one to

¢ (having typical values betweenm p T)Teach requires unique initialization, execution, and-postessing.

To reducethe manual effort involved in performing the powsasterior approach within sampling sequence
analyses for multiple models, the MCMCBa$eframework was developed t@automateMCMC sampling, model

prediction, and model validation sequerfées MCMCBayes isa readily extensible, opesource,objectoriented,

8 The expected value for a product distribution of the independentosarsiis O @ 0@ J0 U (Bohrnstedt
and Goldberger 1969, 143%142)

81 Using either the inverse transform method (see Appekdix or standard sampling techniques (e.g., samples from
0 ¢ 1 arvs, see Appendin.3).

82 https://gitlab.com/reubenajohnston/MCMCBayes

83 SeeAppendix Efor general descriptions of relevant simulation techniques used by MCMCBayes and its
dependencies.
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software library that supports MCMBased Bayesian analysis using MATL#&Bwith OpenBUG® (Lunn et al.2000,

325:337; Lunn et al. 2009, 3043067) JAGS® (Plummer 2003, 125)pr Staff’ (Carpenter et al. 2017)

In addition to the dta for the phenomenon, MCMCBayes requires several forms of input for performing
Bayesian analyses. One must supply general input values for controlling MCMC sampling, MCMC diagnagtics, an

summary statistics generation

MCMCBayes provides output estites for prior distributions, posterior distributions, and MCMC
convergence diagnostf®s The distribution estimates include graphical histograms and numerical summary statistics
such as the sampling mean, standard deviation, minimums, maximums, and pagitesor density (HPD) intervals.
MCMC convergence diagnostic outputs include graphical output results for trace (i.e., raw sample), ergodic mean, and

autocorrelation function (ACF) plots, as well as the Monte Carlo eMCE) estimategsee AppendiE.4.4).

MCMCBayes forecasts using either the averaged or individual models and evaluates their prediction
performance using BF, meaguare forecasting error (MSPE)and visually. Bayes factors use the marginal likelihood
valuesthat areapproximated here using the powem st er i or 6 s s e r(sea AppevidMI outinegpliyo a ¢ h
(Friel and Pettitt 2008, 58807; Friel, Hurn, and Wyse 2014, 7323), with & o mdiscretization steps and a
temperature parametér . In addition to BF and MSFE, MCMCBayes supports visual evaluation of individual and

averaged models by plottingetin predictions alongside the original data.

MCMCBayes implements the ANAN9 steps in the Bayesian analysis sequence for each of the individual
models and then AN10 for the averaged model. Most step instances aaes@ibed by their general descrapts.
However, AN3, fiDetermine point epgaimmeéesr s,o00 mdrli tprioddidii

concerning its tailored implementation.

64 http://www.mathworks.com

8 http://www.openbugs.net

5 http://mcmejags.sourceforge.net

57 http://mecstan.org/

®1n general, practitioners cannot validate achievement of convergenceyégin some cases, MCMC diagnostics (see
AppendixE.4.4 imply nonconvergencéHoff 2009)

8 For convenience, MCMCBayes computes MSFE using pestimats f or t he model 6s posterior di
using raw samples from model distributions).
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To support construction of informative Bayesian priors for each of the models, AN3 is rstiegiméirst, best
judgment by the researcher should be used to specify one of theggnaaneters in each prior distribution. Next, these
would be provided to MCMCBayes, and for eashfj scenario, it then uses maximum likelihood estimation (MLE
see AppendixD.1) or least squares (L.See AppendiD.2) techniques for model fitment, using the derivgd g to
generate a set of point estimates for each model variable. Then, becagd@ghn prior distribution for each model
variable has known equations for its mean, MCMCBayes algebraically solves for theplayasreter corresponding

with the specified one by assuming that the expected value for each variable is the resulting &stimés MLE or

LS-model fitment.
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Chapter 5. Resultsand discussion

In this chapter outcones are described and reviewedanr parts: Section5.1 discusseshe data cleansing;
Section5.2 highlightscalibration results fromu s i n g Co o k Sétisn5.3heghlights the results fromthe b | -a ¢ k
box 0 dedackekcitation and aggregation, aadalysisthatincludesbaselineforecasting demonstrations from both
individual and averaged modelndSection5.4hi ghl i ght s t he rbeosxwl tostaddkcitation andhe fAcl ear

aggregation, and analysis that includeseral scaled fecasting demonstratiofisr arbitrary SR and SAP combinations
5.1Cleansing

In the expert judgment workshopkgathered necessary data to support expert validation and afterwards
performed data cleansing. The resulting data includeeasséssment questinaire responses and practical assessment
results. Three persons sel§sessed their skill level below the designated threshold (i.e., less than Dreyfus skill level 3,
AiCompetento). Additionalslsgssetieasi i ppbéPodiompontsetl §uoces
completed the practical assessment and listed satisfactory levels of training and experience. Therefore, removal of the
information provided by the former three persons cleansed the elicited data s&abf&el andTable5-2 respectively

for resulting individual experieze and practical assessment data

Table5-1: Expert experience

Expert # Q1 Q2 | Q3 | Q4 Q5 Q6 Q7 Q8 Q9
Yes
1 B.S.C.S., Math 12 | 36 ARM, x86, C, C++ Month Week zzz Competent
minor AVR,PIC | © No P
No
Yes
B.S.CS. EE C. C++ Yes
2 ST 10 | 24 | x86, ARM . ’ Month Month Yes Proficient
minor JAVA
Yes
Yes
x86, ARM, Yes
B.S.E.E.,B.S. Motorola Ada,C, C++, Yes
C.S.,MS.SE., HC12, JAVA, C#, .
REuben PhD. S.E. (in 80 | 36 SPARC, Visual Basic, Week Week i:z Proficient
progress) PIC, AVR, | Python Y
es
PowerPC
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Expert# | Q1 Q2 | Q3 | Q4 Q5 Q6 Q7 Q8 Q9
x86,
PowerPC, Yes
B.S. Comp.E., im‘gc gyt%;; Yes
5 Prr:)D.rgs.SS). (in 20 | 6 MIPS. JAVA, Year Week izz Competent
prog Motorola | OCAML Ves
HC11,
ARM
ARM, x86, “g
B.A. C.S., Math MSP 430, | C, Python, -
6 minor, M.S. C.S. 10 | 36 Motorola Shell code Week Month Yes Proficient
Yes
6805
Yes
Yes
ijgﬁ(msrjef C, G+, Every 2 Yes
7 C.S. minor M S 40 | 20 | x86 Python, monrt);1s 2-3 Week Yes Competent
iy U NET, JAVA Yes
Info. Assur.
Yes
Table5-2: Practical assessment results
Expert | Q1 Q1 (time) | Q2 Q2
(correct) (correct) (time)
Yes 12min Yes 5min,25sec
2 Close 15min Yes 3min,24sec
enough™
REuben | Yes 21min Yes 7min
5 Yes 13min Yes 19min
6 Yes 50min Yes 19min
7 Yes 27min Yes 8min

5.2 Calibration
The outcomes from using Cookeds method are now discusse

With the experprovided, seedjuestion response data as input, a spreadsheet tool and EXéaligne used
to perform theexpert calibration computationgor each of the expert§, pltf8 hO, the spreadsheet tool preprocessed
the information (e.g., estimated the individual, expert, distribution extremes), and Excalibur derived their calibration and
information scores (i.ed ‘Q and'0Q) as well as theiperformancebased anequalaggregation weights (i.e), Q,

ando Q).

0 Fortunately, approximate results are acceptable when tossing horseshoes, throwing hand grenades (i.e., in the game
iGol denEye 0070), enginkeripger forming reverse

1 hitp://www.lighttwist.net/wp/excalibur
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It is common practice to compare the performance of the CCM virtual decisader O 0) across the
alternatives of global weight0 ), item weight {00 0), and equal weight@ ) (Cooke and Goossens, L L H J 2008,
657-674). For this dataset, analysis identified the preferences as global, item, and equal weight DMs; all three DMs
outperformed the calibrath score of the best expéniot a good outcome)For each experf,able5-3 lists the numbers

of seed questions assessed out of the total, calibration scores, information scores, performance weights, aightgual we

Table5-3: Expert scores ranked using Cookeb6s method

Seeds 6 0 0 0
Id assessed | § 0 o0 no DM no DM,
out of n
00 8/12 0.2472 1.001 | -- -
‘000 8/12 0.1105 1.012 | -- -
00 8/12 0.2472 0.3883 | -- -
Expert4 | 5/12 0.05281 1.283 | 0.7563 | 0.1667
Expert6 | 4/12 0.01264 1.594 | 0.225 0.1667
Expert2 | 2/12 0.0009623 | 1.74 0.01868 | 0.1667
Expert3 | 1/12 0.0005433 | 2.053 |0 0.1667
Expert5 | 3/12 0.0005842 | 1.029 |0 0.1667
Expertl | 2/12 0.0000397 | 1.028 | 0 0.1667

Expert performance from the calibration exercise, as measured by the CCMs fedlewas. Only Experts 4,
6, and 2 received nerero, performancdased weightd, each having the respective normalized valuex a b,
¢ @ b andp& b. The corresponding, and very logignificance level thresholdy 18t T T W @ for Expert 2.
Experts 3 and 5 received calibration scores in the same order of magnitude as 2. The score for Expent 1lovasr

in range.

Two significant factors contributed to the very low calibration scores. The first wasf@akCMapproach
training sessio@ thus this type of instruction is strongly recommended for future studies. The second factor involved
the data used to create the calibration questions. Participants should have been calibrated based on thedsabggy to
software security performance. As no quantitative daeeawvailable for generating directly relevant seed questions, it

was necessary to use a proxy dataset. Unfortunately, even this proxy had several limitations. The trivial RE problems

2]t is common for the CCM to assigh ‘Q  1tto many expert§Ryan et al2012, 774784).
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perfamed in this experiment were significantly reduced in complexity from the RE necessary for performing product

security assessments; in addition, some of the relevant variables were not available (e.g., student RE skill levels).
53Phase I-b6RD) ack

In this section,outcomesfrom the Phase | analysise described and reviewed in two pa8sbsection5.3.1
discusses highlights of the elicitation and data aggregationSah@ection5.3.2highlights the results fromthe b | -a ¢ k

b 0 amalysis and includes forecasting demonstrations for selvasalineSR and SAP examples.
5.3.1Elicitation and data aggregation
Results from they portions of elicitation and aggregatiorere as follows.

| executed datgathering via a series of expgudgment workshops. Four persons participated in the pilot
(including myself) and five persons completed the main elicitation sessions. Several methodology adjustments were
necessary ding execution of the workshop. For example, during the pilot seskimodified some of the baseline
variable values and, at the participantsoO or egfricatat , transl af
number of functions) to approximate lines of code. Following the main workslogmented the list of variables. This
included refinement of the variables describing development languages, refinement of the variables desctdbig avai
design information, insertion of an aitéimpering variable, and addition of variables defining the complexity due to
virtualization and parallel processing. Consequently, in a folipwelicitation session, participants adjusted their

probability dstributions per their beliefs on the updated baseline scenarios.

Figure5-1 shows a sample response set using colored rectangles that represent’tfertins probability
distribution in each Jveek interval Where each ispecified by a] n,N N1 s pandj  setof thresholds that
define a piecewiséinear probability distributionsee Appendi.5) for cumulativediscoveries in thee f p T @

scanario.

73|.e., bin contains the lowest 5% of the possible realizations from the specified distributierobitains the lower
middle 5%50%, biry contains the uppemiddle 50%95%, and bincontains the highest 5%.
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Figure5-1: Example expertesponse of probability distribution bins

Experts estimatethe expected cumulative discoveri€0 g i ), over time 0.

The final data aggregation sequenproceeded as follows. First, the individual expert data was initially
combinedusing the computed CCM performance weights and then separately using the equal weights. Second, the
aggregated data was rounded, which resulted in two sets of compleabititplolistributions for the expected cumulative
discoveries at every time interval. Third, the individual and two aggregate distributions were used to separately derive
corresponding sets of intervedeans numerically via simulation. Fourth and finathese intervamean sets were each

cumulatively summed for thigaselineSR and SARombinationsf interest.
For each individual and aggregate probability distribution set, the computations above resulted in five data
point estimates fofr 4 atdo p ft fo ft fu weeks. Assuming zerdiscoveries starting & Tt Figure5-2 depicts

a comparison of the cumulative individual and aggregate results for scemdfio v u: green indicated 'Q derived

aggregate distributiony ¢ ; black indicates) 'Q derived aggregate distributiof; ¢  ; and blue

indicates those derived from the individual distributiofigble5-4 lists the aggregated results alppendix Hprovides

additional details and illustrations

72



Figure5-2: Elicited cumulative discoveries over timexample 1
Baseline SR athSAP withf v v

Table5-4: Dataresults from simulating aggregated expert distributions

r Equal weighting Performance-based weighting
148 | [0, 17, 38, 62, 83, 96] [0, 20, 41, 65, 79, 88]
55 [0, 5,13, 22, 33, 39] [0, 6,17, 27, 33, 37]
20 [0,2,5,9, 12, 14] [0,2,6,11,12,13]
[0,0,1,23,4] [0,0,2,3,3,4]
[0,0,0,1,1,1] [0,0,0,1,1,1]

The data aggregation results supported the following observations. First, given the specified S&satide
SAP combinations, interval counts of discoveries over time provided by the experts were lower than expected. An
obvious interpretation is that the experts believed that the level of difficulty for vulnerability discovery was high.
Another, less obvigs, rationale is that the experts assumed a population of vulnerability types that required increased
inspection effort to discover because, by design, the constructed elicitation scenarios associdtedSkitand SAP
o ,instructed the experts &ssumaypical mixtures of vulnerability types in. Second, as the assumed quality increased
(i.e., decreasing), the resulting differences in expected cumulative discoveries over time (i.egevepsior datar
and  , respectiely, theo Q and0 Q derived datasefsdecreased Third, the aggregated data indicated that

discoveryevent rates for the baseligR and SARombinations varied over time. The expert dadaported RH1, as
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