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Abstract 

 
 
Software vulnerabilities that enable well-known exploit techniques for committing computer crimes are preventable, but 

they continue to be present in releases.  When Blackhats (i.e., malicious researchers) discover these vulnerabilities they 

oftentimes release corresponding exploit software and malware.  If vulnerabilitiesðor discoveries of themðare not 

prevented, mitigated, or addressed, customer confidence could be reduced.  In addressing the issue, software-makers must 

choose which mitigation alternatives will provide maximal impact and use vulnerability discovery modeling (VDM) 

techniques to support their decision-making process.  In the literature, applications of these techniques have used 

traditional approaches to analysis and, despite the dearth of data, have not included information from experts and do not 

include influential variables describing the software release (SR) (e.g., code size and complexity characteristics) and 

security assessment profile (SAP) (e.g., security team size or skill).  Consequently, they have been limited to modeling 

discoveries over time for SR and SAP scenarios of unique products, whose results are not readily comparable without 

making assumptions that equate all SR and SAP combinations under study.  This research takes an alternative approach, 

applying Bayesian methods to modeling the vulnerability-discovery phenomenon.  Relevant data were obtained from 

expert judgment (i.e., information elicited from security experts in structured workshops) and from public databases.  The 

open-source framework, MCMCBayes, was developed to perform Bayesian model averaging (BMA).  It combines 

predictions of interval-grouped discoveries by performance-weighting results from six variants of the non-homogeneous 

Poisson process, two regression models, and two growth-curve models.  Utilizing expert judgment also enables 

forecasting expected discoveries over time for arbitrary SR and SAP combinations, thus helping software-makers to better 

understand the effects of influential variables they control on the phenomenon.  This requires defining variables that 

describe arbitrary SR and SAP combinations as well as constructing VDM extensions that parametrically scale results 

from a defined baseline SR and SAP to the arbitrary SR and SAP of interest.  Scaling parameters were estimated using 

elicited multivariate data gathered with a novel paired comparison approach.  MCMCBayes uses the multivariate data 

with the BMA model for the baseline to perform predictions for desired SR and SAP combinations and to demonstrate 

how multivariate VDM techniques could be used.  The research is applicable to software-makers and persons interested 

in applications of expert-judgment elicitation or those using Bayesian analysis techniques with phenomena having non-

decreasing counts over time. 
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46. ɝ  Some observable (e.g., prediction) for a phenomenon 

47. ῳ   Phenomenon observables in the baseline SR and SAP 

48. ῳ  Phenomenon observables in the Ὥth SR and SAP 

49. ῳ  Scaling term observables 

50. ὖὶɝȿ╓  Posterior probability of an observable given the data 

51. Ὂ◙  Candidate function for the analysis that is within ὖὶɝȿ╓  

52. ◙  Set of variables (or parameters) in the candidate function 

53. “Ͻ  ὖὶϽ for functions of ◙ 

54. “◙  Joint, prior distribution for the variables in the candidate function 

55. fl◙ȿ╓  Likelihood function of the parameters given the data 

56. ÌÏÇfl◙ȿ╓  Log-Likelihood function of the parameters given the data 

57. “◙ȿ╓  Joint, posterior distribution for the variables in the candidate function given the data 

58. “Ὸȿ◙Ȣ ȟ╓  Full-conditional posterior distribution of the Ὦth variable that conditions on all the other variables and 

the data 

59. Ñ Ϸ   Thresholds for a set of quantiles that contribute to defining a distribution using expert judgment (e.g., 

Ñ ϷȟÑ ϷȟÑ ϷȟÑ ϷȟÑ Ϸ) (Cookeôs method) 

60. ὦὭὲ  Probability quantiles, ὦὭὲ, ὦὭὲ, ὦὭὲ, ὦὭὲ, that are bounded using Ñ ϷȟÑ ϷȟÑ ϷȟÑ ϷȟÑ Ϸ 

(Cookeôs method) 

 Number of seed (or calibration) questions (Cookeôs method)  ה .61

62. Ὁ  Number of experts (Cookeôs method) 

63. Ὡ  Expert identifier (Cookeôs method) 

64.    Quantitative answer to a seed question (Cookeôs method) 
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65.    Quantitative answer to the Ὥth seed question (Cookeôs method) 

66. Ὥ  Seed item identifier (Cookeôs method) 

67. ή  Maximum lower bound for   (Cookeôs method) 

68. ή   Maximum upper bound for   (Cookeôs method) 

69. Ὧ  ὯϷ intrinsic range for ή and ή  (Cookeôs method) 

70. ὅὩ Calibration score for expert Ὡ (Cookeôs method) 

71. ”  Calibration power (Cookeôs method) 

72. ὍὩ  Information score for expert Ὡ (Cookeôs method) 

73. ὍὩȟὭ Individual expert Ὡôs information score for seed-item Ὥ (Cookeôs method) 

74. ὬὩȟὭ Expert Ὡôs density function for seed-item Ὥ (Cookeôs method) 

75. ɚ  Quality level cutoff for experts that defines a factor multiplied against each weight (i.e., ρ Ø π 

if Ø ɚ and ρ Ø ρ otherwise) (Cookeôs method) 

76. ύ Ὡ Global weight for the expert Ὡ (Cookeôs method) 

77. ύ ὩȟὭ Item weight for the expert Ὡ (Cookeôs method) 

78. ύ Ὡ Equal weight for the expert Ὡ 

79. Ὀὓ Global weight decision maker (Cookeôs method) 

80. ὍὈὓ Item weight decision maker (Cookeôs method) 

81. Ὀὓ  Equal weight decision maker (Cookeôs method) 

82. Ὂ ὸȠ◙  General model form (for Ὢὸ) that is a function with a set of model variables ◙ that represents the 

expected discoveries over time given ● 

83. Ὄ ὸȠⱣ Temporal parametric model form of Ὂ with a set of parameters Ᵽ 

84. όȟ‒ȟ‖ Parameters in parametric NHPP candidate models 

85. ‍ȟ‍ȟ‍ȟὶ Parameters in regression and growth curve candidate models; ὶ is also used for momentum variables 

in NUTS 

86. ὥȟὦȟὧȟὨ Hyperparameters in distributions for parametric variables 

87. ὫȟὬȟὴȟή Hyperparameters in distributions for parametric variables 

88. ‭  Zero-mean error term for some of the parametric models 

89. Ὃ ὸȠῸὸ  Temporal non-parametric form of Ὂ with a stochastic process Ὸὸ 

90. Ὸὸ  Variable in non-parametric NHPP candidate models for expected discoveries over time 

 בּ Variable in non-parametric NHPP candidate models for expected grouped discoveries in interval  בּיּ .91

92. ɤᶻὸȟὧ Hyperparameters in distributions for non-parametric NHPP candidate model variables 

93. Ὓ●Ƞ╬ Parametric model form of ί●  with the ὲ ρ parameter vector ╬ 

94. ╬  ὲ ρ parameter vector for the scaling functions 

95. ὖὶῳȿὓּדȟ╓  Posterior probability of an observable given the ּדth model and data 

96. ὓּדּ  דth model amongst a group of model candidates 

 Candidate model identifier  דּ .97

98. ὑ  Number of candidate models 
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99. fl◙ּדȿὓּדȟ╓  Likelihood function for variables in the ּדth model  

th model, ὓדּ Set of parameters for the  דּ◙ .100  

דȿὓּדּ◙“ .101  Joint, prior distribution for the variables in the ּדth model 

╓ȟדȿὓּדּ◙“ .102  Joint, posterior distribution for the variables in the ּדth model 

103. ὖὶὓּדȿ╓  Posterior probability for the ּדth model given the data 

104. ὖὶὓ  Prior probability for the ּדth model 

105. ὖὶ╓ȿὓּד  Marginal likelihood of the data given the ּדth model 

106. Ὢ ὼ Probability density function for ὢ (i.e., ὖὶὼ ὢ ὼ Ὠὼ ὪὼϽὨὼ, for infinitely small Ὠὼ) 

107. Ὂ ὼ Cumulative distribution function (cdf) for ὢ (i.e., ὖὶὢ ὼ) 

108. Ὂ ὼ Uniform distributionôs cdf 

109. ὉϽ  Expected value for a probability distribution or sample set 

110. ὌὖὈϽ Range of values in “—ȿ╓  with total probability ρ ‌ (i.e., — ȟ— ) for asymmetric and 

symmetric distributions (a.k.a. ὅὍϽ for symmetric distributions) 

111. ‌  Value used to specify total probability thresholds for HPD and CI estimation; additionally refers to 

the acceptance probability threshold for Metropolis updates 

112. ὛὈϽ Standard deviation for a probability distribution or sample set 

113. ὠὥὶϽ Variance for a probability distribution or sample set 

114. ὅέὺϽ Covariance between random variables 

115. ὅέὶὶϽ Coefficient of correlation between random variables 

116. ὃὅέὶὶϽ Autocorrelation measure between consecutive sample values that is a function of a lag ὒ difference 

measure 

117. ὢὅέὶὶϽ Cross-correlation measure between consecutive sample values of different variables that is a function 

of a lag ὒ difference measure 

118. ὓὅὉϽ Monte Carlo error measure of the quality of a set of samples (i.e., variance of batch means, ῸӶ, and 

the sample mean ῸӶ across a set of fi sample batches) 

119. fi   Number of batches for batch-mean estimator (MCE) 

120. ῸӶ  Sample mean for ὦth batch (MCE) 

121. —Љ  Љth sample of the parameter — 

122. ὄ  Burn-in threshold sample number 

123. Ὕ  Number of samples to gather 

124. —  Point estimate for the parameter — (e.g, Ὁ“—  or Ὁ“—ȿ╓ ) 

125. —Ӷ  Sample mean for the parameter —; also represents current best in some MCMC algorithms 

126. —  Proposal candidates for — 

127. —ȟὶ  Leftmost state leaf in the NUTS binary map  

128. —ȟὶ  Rightmost state leaf in the NUTS binary map 

129.  θ  ñProportional toò operator 
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130.  ͯ  ñDistributed according toò operator; in the pseudo-code examples, it instead means to sample from 

a distribution of that type 

131. Ὕὥȟὦ Truncation operator that only retains samples between ὥ and ὦ 

132. ᴁϽᴁ  Vector norm, ᴁ●ᴁ ὼ ὼ Ễ ὼ for the ὴ ρ vector ● 

133. ᶯ Ͻ Gradient with respect to variable ᾀ 

134. ὑϽ  MCMC transition kernel function 

135. ήϽ  MH proposal distribution 

136. Ὣὼ Distribution that is easy to sample from (rejection sampling, squeezed rejection sampling, ARS, and 

ARMS) 

137. Ὡὼ  Envelope function (rejection sampling and squeezed rejection sampling) 

138. ÅØÐὬὼ   Envelope function (ARS and ARMS) 

139. ίὼ  Squeezing function (squeezed rejection sampling) 

140. ÅØÐּאὼ   Squeezing function (ARS) 

141. Ὓ  Current set of ascendingly ordered abscissa ὼȠὭ πȟȣȟὲ ρ (ARS, ARMS) 

142. ώ  Set of function evaluations, ὰὲὪὼ ȠὭ πȟȣȟὲ ρ, that correspond with Ὓ (ARS, ARMS) 

143. ὒ ὼȠὛ  Straight lines through adjacent points ὼȟὰὲὪὼ  and ὼȟὰὲὪὼ , where ὼ ὼ ὼ (ARS, 

ARMS) 

144. ύ  Estimate of the typical size of a slice (Slice sampler) 

יִ .145   Integer limiting the size of a slice to ִי Ͻύ (Slice sampler) 

146. ʀ  Size of fictitious time steps for the leapfrog algorithm (HMC, NUTS) 

147. ὒ  Number of steps for the leapfrog algorithm (HMC, NUTS) 

148. ÌÏÇfl— Log-density function (HMC, NUTS) 

149. ‗  Target simulation length (‗ ‐ὒ) (HMC) 

150. ɿ  Target mean acceptance probability (HMC, NUTS) 

151. ὓ  Number of iterations after which to stop the dual-averaging adaptation (HMC, NUTS) 

152. Ͻ  Returns 1 if the expression in brackets is true and 0 if it is false (NUTS) 

153. ‰  Temperature (power-posterior) 

154. ‰  Temperature at the Ὥth discretization step, ‰  (power-posterior) 

155. ὲ   Discretization steps (power-posterior) 

156. ὧ  Parameter in the temperature schedule function (power-posterior) 

157. “ Ὸȿ╓  Power-posterior density function at temperature step ‰, flῸȿ╓ Ͻ“Ὸ  (power-posterior) 

158. ɡȿ╓ȟ‰ Used in the notation for Ὁȿ╓ȟ Ͻ, 6ÁÒȿ╓ȟ Ͻ, and -#%ȿ╓ȟ Ͻ that are all measured using samples 

from “ Ὸȿ╓  (power-posterior) 

159. ί  -#%ȿ╓ȟ Ὁȿ╓ȟ ÌÏÇflɡȿ╓  (power-posterior) 
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160. ὑὒὥȟὦ Kullback-Leibler distance measure between ὥ (i.e., prior distribution) and  ὦ (i.e., posterior 

distribution) 
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Glossary of Terms 

 
 
Attack surface:  ñThe sum of all code and functionality accessible to users and potential attackersò (Howard and Lipner 

2006) 

Blackhats:  Software security researchers having malicious intent 

Cleansing:  The act of removing all corresponding symbol or debug information from code 

Decompile:  Converting assembly or portable code language (e.g., bytecode artifacts for virtual machines) back into 

higher level programming languages (e.g., C or JAVA) 

Disassembly:  Converting a software binary from machine code form (i.e., object code, or raw bytes of the program) into 

human readable assembly language 

Dynamic access:  Ability to control and monitor execution of software either on target or on similar virtual computing 

devices 

Dynamic analysis:  Software inspections that run either on target or on similar virtual computing devices and allow for 

controlling and monitoring execution 

Exploit:  A software threat that takes advantage of an existing vulnerability to support malicious software needs 

Fuzz testing:  Functional boundary testing for security quality of software 

Information security:  ñPreservation of confidentiality, integrity, availability, authenticity, accountability, non-

repudiation, and reliability of informationò (International Organization for Standardization 2009) 

Malware:  Malicious software that uses exploits and generally performs something undesirable to system or user assets 

(e.g., computer viruses, computer worms, Trojan horses, ransomware, and adware) 

Obfuscation:  The act of transforming code to inhibit reverse engineering performance 

Reverse engineering (RE):  External inspection of a system (often without the aid of original design information) with 

the goal of attaining sufficient system design comprehension (E. J. Chikofsky and J. H. Cross 1990, 13-17; M. G. Rekoff 

1985, 244-252) to enable the security assessment 

Security assessment:  Artifact RE and security analysis activities directed to the evaluation of the security quality of a 

software release (i.e., the inspection of artifacts to discover vulnerabilities) 

Security assessment profile (SAP):  Set of variables detailing the security inspection of a particular software release (e.g., 

security assessment team size or skill); SAP is akin to using operational profile (OP)  in the security assessment context 

Security quality:  ñCharacteristics of a product or service that bear on its ability to satisfy stated or impliedò (Nelsen and 

Daniels 2007, 39-59) security needs for all stakeholders 

Security sensitive:  Indicates dependencies on one or more of the security tenets ; considered to be the attack surface for 

malicious users 

Software release (SR):  Set of variables describing a particular software version (e.g., code size or complexity) 

Static analysis:  Software inspections that manually review raw binary, assembly, and higher-level language artifacts 

when they are not running (Ball 1999, 216-234) 

Threat models:  A ñmethod for uncovering design flaws in a software component before the component is builtò (Howard 

and Lipner 2006) that uses the attackerôs perspective to expose any methods that undermine the security of system assets 
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Vulnerability:  ñInstance of a mistake in the specification, development, or configuration of software such that its 

execution can violate the explicit or implicit security policyò (Ozment 2007, 6-11; Krsul 1998). 

Vulnerability discovery modeling (VDM):  Forecasts security fault discovery events over time and relies on patterns in 

historical discoveries over time (Alhazmi and Malaiya 2008, 14-22) 

Whitehats:  Software security researchers having benevolent intent (e.g., security analysts performing assessments) or 

third-party entities supporting threat mitigation (e.g., vendors providing security products or entities having vested 

interests in managing security risk) 
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Chapter 1.  Introduction  and Background 

 

This chapter provides an introduction to the security problem of interest (i.e., vulnerability discovery post-

release), details the software security lifecycle (SSL) and when discoveries occur within, and introduces strategies 

software-makers use for risk reduction. 

1.1 The security problem 

The rise of electronic crime, the proliferation of networked computing devices and their extensive customer 

usage, as well as the increasing interaction of device software with various forms of sensitive customer information, pose 

significant information security risks (underlined words are defined in the Glossary of Terms) to both consumers (e.g., 

financial losses incurred from malware and corresponding exploit techniques for a vulnerability) and software-makers 

alike (e.g., loss of revenue due to poor security quality) (van Eeten and Bauer 2008, 1-69).  Because of the high cost of 

quality1 and other factors (e.g., compressed-release schedules or the emergence of new security risk categories), 

vulnerabilities exist, and external researchers discover them post-release when performing security assessments (see 

Section 1.2.3.2).  Public disclosures of post-release vulnerabilities increased significantly between 1996 and 2018 (The 

MITRE Corporation 2018a; National Institute of Standards and Technology 2018; IBM 2013; IBM 2017) (e.g., see Figure 

1-1), eroding the reputation of software vendors and reducing customer confidence in security quality.  Addressing all of 

these problems is crucial for companies that develop software and computer hardware (AMD 2018; Apple 2018; ARM 

2018; Google 2018; Intel 2018; Microsoft 2018), because maintaining customer satisfaction in product security is 

essential to their financial success (van Eeten and Bauer 2008, 1-69). 

                                                                            

1 The three fundamental tradeoffs in software system development are cost, schedule, and quality.  In general, quality 

correlates positively with cost and schedule.  Equally important, cost negatively correlates with schedule (Goel and Yang 

1997, 197-267). 
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Figure 1-1:  Vulnerability discoveries per year, 1996-2016 

Consider the following example describing the security-relevant financial dependencies, depicted in Figure 1-

2, between the ith vendor and jth customer (van Eeten and Bauer 2008, 1-69).  Reduced Ὓ security investments from the 

ith vendor lead to increases in the jth customerôs costs (ὅ ) associated with product exploitation (negative correlation).  

These externalities (e.g., customer losses from identity theft and fraud) negatively influence vendor reputation (Ὑ).  Of 

course, there are costs incurred to the vendor for investments in product security (negative correlation) and vendor 

standing with the customer directly influences future revenues (“).  These relationships imply positive correlation with 

security investments and security quality reputation with customers. Decision-makers managing software products must 

therefore efficiently balance security investments throughout a productôs lifecycle, as mitigation to these external 

customer security risks; this endeavor is certainly not trivial. 
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Figure 1-2:  Externalities with reputation presented by van Eeten and Bauer 

1.2 Software security lifecycle (SSL) 

A holistic understanding of software security necessitates comprehension of the SSL, software vulnerability 

states in the lifecycle, and how they both relate to the software development process and product lifecycle.  This 

description of the SSL first outlines a common model for the product lifecycle, ANSI/EIA-724, with some tailoring to 

encompass software security in the phase descriptions.  An overview of the software vulnerability states then follows.  

Lastly, it provides presentation of the new model for the software security lifecycle, outlines several fundamental 

components of the lifecycle (software development, the trustworthy computing security development lifecycle, the 

process for software security assessment, and vulnerability disclosure/handling best practices). 

1.2.1 Product lifecycle 

ANSI/EIA-724 defines the set of phases, depicted in Figure 1-3, as the product lifecycle model (Electronic 

Industries Association 1997).  The original application for this model was for describing the lifecycle of products in the 

electronics industry (Solomon, Sandborn, and Pecht 2000, 707-717).  However, because modern electronics almost 

certainly include some form of a computer processor matched with software (e.g., smartphones, tablets, and notebook 

computers), with some extensions, it is relevant for this security-centric application.  In chronological order, the lifecycle 

stages are ñintroductionò, ñgrowthò, ñmaturityò, ñsaturationò, ñdeclineò, and ñphase-outò. 
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Figure 1-3:  ANSI/EIA-724 Product Lifecycle Model 

Table 1-1 describes by example2 the ANSI/EIA-724 product lifecycle stages tailored to encompass security 

aspects relevant to this research.  It assumes the software-maker follows a process similar to the trustworthy computing 

security development lifecycle (SDL) described in Section 1.2.3.1.  For each stage, it lists notional sales, usage, feature 

growth, security assessment related activities performed by groups external to the software-maker, state of the security 

processes at the software-maker, and support levels provided by the software-maker.  The tableôs sales and usage rows 

describe the changes over time in the productôs customer base.  The values for changes in the productôs customer base 

should correlate positively with level changes in the frequency that external groups perform security assessment activities.  

The row listing feature growth in the product reflects a positive correlation with size and complexity of the released 

software artifacts.  The row listing the software-makerôs security process state describes how, over time, the 

implementation state of the SDL processes matures.  The final row presents the status of scheduled major and as-needed 

security update releases. 

Table 1-1:  Notional summaries for stages in the ANSI-EIA-724 Product Lifecycle Model 

 Introduction Growth Maturity Saturation Decline Phase-out 

Sales Low MediumĄ 

High 

High (peaks) High 
(declines 
from peak) 

HighĄ 

Medium 

Low 

Usage Low LowĄ 
Medium 

High High Medium Low 

Feature 
growth 

Medium High Medium Medium Low None 

                                                                            

2 In a fashion similar to how Solomon et al. (Solomon, Sandborn, and Pecht 2000, 707-717) described the lifecycle for 

electronic parts. 
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 Introduction Growth Maturity Saturation Decline Phase-out 

External 
security 
assessment 
activity 

Low Medium High Medium Low None 

Software-
makerôs 
security 
process 
state 

New Stable Mature Mature Mature Mature 

Support 
level 

Major + 
security 
updates 

Major + 
security 
updates 

Major + 
security 
updates 

Major + 
security 
updates 

Security 
updates 

All updates 
discontinued 

1.2.2 Software vulnerability states 

Software vulnerabilities are simply a mistake performed in the design, implementation, or configuration of 

software that results in information security risk.  Many types of vulnerabilities are presented in the literature.  Some of 

the notable examples include poor memory management, un-validated user input, the presence of race conditions that 

expose some critical asset, improper access control, inadequate initialization, and execution of software functions with 

unnecessary privileges (Howard 2009, 68-71). 

The scope of this research does not include technical specifics of software security faults or their classification.  

For a discussion covering popular software security fault classifications (including taxonomy and ontology 

developments), interested readers may refer to Meunier (Meunier 2008, 1-18) and the Common Weakness Enumeration 

(CWE) initiative (The MITRE Corporation 2018b).  See Erlingsson, Younan, Piessens (Erlingsson, Younan, and Piessens 

2010, 633-658) and Daswani et al. (Daswani, Kern, and Kesavan 2007), for an introduction to common vulnerability 

examples (e.g., buffer overflows, SQL injection, and unvalidated input). 

Figure 1-4 and Figure 1-5 extend the vulnerability lifecycle state model by Arbaugh et al. (Arbaugh, Fithen, 

and McHugh 2000, 52-59), that originally included phases for ñbirthò, ñdiscoveryò, ñdisclosureò, ñcorrectionò, 

ñpublicityò, ñscriptingò, and ñdeathò, by:  renaming ñbirthò to ñintroducedò; extending ñdiscoveryò to include intent and 

temporal details; extending ñdisclosureò to include temporal details; replacing ñpublicityò and ñscriptingò with 

ñexploitedò and ñmalware that uses exploitò; expanding ñcorrectionò to include prerelease and post-release alternatives; 

and replacing ñdeathò with ñremovedò or ñobsolete.ò  They illustrate the set of possible states for a vulnerability:  (1) 

introduced; (2) discovered prerelease, benevolent; (3) vulnerability disclosed prerelease to software-maker; (4) removed 
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prerelease; (5) discovered post-release, benevolent; (6) vulnerability disclosed post-release to software-maker; (7) 

security update deployed; (8) obsolete; (9) discovered prerelease, malicious; (10) discovered post-release, malicious; (11) 

exploit released;  and (12) malware using exploit released.  ñIntroductionò refers to vulnerability creation and this happens 

within a product release cycle (i.e., prior to product release).  Addressing the vulnerability takes three forms:  removing 

prerelease; removing via security update; and having the exploitation risk go away due to obsolescence.  The two 

elimination alternatives involve removal of the vulnerability from the software and deployment of the corresponding 

release to customers.  The obsolete alternative involves a vulnerability that remains in a product that has been phased out 

and is hopefully no longer relevant. 
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Figure 1-4:  Vulnerability lifecycle states in the SSL 

Vulnerability states are increasingly ranked by customer risk exposure, from left to right.  The 

abbreviations are:  ñbene.ò for benevolent; and ñmali.ò for malicious. 
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Figure 1-5:  Vulnerability lifecycle state sequences in the SSL 

The abbreviations are:  ñbene.ò for benevolent; ñmali.ò for malicious; ñdiscov.ò for discovered; 

ñdisclo.ò for disclosed; ñrem.ò for removed; ñexplo.ò for exploited; ñmalw.ò for malware; and ñobs.ò 

for obsolete. 

For introduced vulnerabilities3, the model presents seven state sequences plus several sequential combinations 

of them.  It is important to note that security assessment activities performed by each entity type (ñmaliciousò and 

ñbenevolentò) typically happen concurrently.  Consequently, dual states are possible (e.g., states ñ5ò and ñ10ò) and the 

state sequences for either entity type might coexist and progress independently. The ñprerelease benevolent discoveryò 

and ñeliminationò state sequences (i.e., ñ1-2-4ò and ñ1-2-3-4ò) reflect the preferred outcome for addressing introduced 

vulnerabilities (i.e., no customer exposure).  The ñpost-release benevolent discoveryò and ñdeployment of security update 

releaseò (i.e., ñ1-5-6-7ò and ñ1-5-7ò) represent the next best result.  The ñintroductionò to ñphase-outò sequence (i.e., ñ1-

8ò) describes a fortunate result that results in no customer exposure to security risk. 

Sequences beginning with either ñprerelease malicious discoveryò or ñpost-release malicious discoveryò are 

undesirable yet realistic.  The former defines the infamous ñzero-dayò vulnerability situation and when exploited is the 

                                                                            

3 Obviously, preventing the creation of the fault altogether is ideal. 
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sequence ñ1-9-11-12ò.  The latter is the sequence ñ1-10-11-12ò.  Either of the post-release benevolent discovery 

sequences should follow the exploit or malware release . 

Admittedly, it is possible for exploited vulnerabilities to fail benevolent discovery or lack sufficient resources 

to attain elimination through security update release.  As these situations have been omitted from Figure 1-5, a complete 

diagram would reflect these changes using sequence extensions defined by connecting the states ñ12-8ò, ñ5-8ò, and ñ6-

8ò. 

1.2.3 SSL model 

It is important to first orient the security problem (i.e., vulnerability discoveries) within the context of the 

software security lifecycle (SSL).  In this research, the SSL is presented as a circular model that:  1) fits within a productôs 

lifecycle (see Figure 1-6); 2) incorporates iterative and incremental development (IID) for producing secure software; 3) 

demonstrates IIDôs relations to the problem of post-release vulnerability discovery; and 4) identifies interactions that 

influence customer satisfaction in security quality.  Also, many sources provided inspiration in developing the SSL model 

(Arbaugh, Fithen, and McHugh 2000, 52-59; Lipner 2004, 2-13; Howard and Lipner 2006; Lipner 2016; Larman 2004; 

Electronic Industries Association 1997; Cusumano and Yoffie 1999, 60-69; Stankosky 2002; Bourque and Fairley 2014; 

International Organization for Standardization 2013; International Organization for Standardization 2014). 

Figure 1-7 illustrates the SSL from the software-makerôs perspective and, in an overlay (cf. Figure 1-4), 

identifies points where the vulnerability state makes transitions4.  The SSL starts at the top left of Figure 1-7 and proceeds 

clockwise, progressing chronologically with stages for product planning, major- or patch-release IID cycles, and security 

assessment cycles.  The chronological path then diverges into Flow1 and Flow2; from here, all ensuing traversals depend 

on the discovering entity types.  Flow1, the outer arc, initiates when external Blackhats discover a vulnerability and 

includes subsequent release cycles for exploit software and malware.  Flow2, the inner arc, begins when external 

Whitehats, or software-maker analysts, realize a vulnerability discovery post-release.  For external Whitehat discoveries, 

Flow2 can also be diverted to associated third-party entities involved in facilitating mitigations to security threats (e.g., 

companies that make anti-malware software).  Eventually, the SSL comes full circle when Flow1 and Flow2 paths 

                                                                            

4 For clarity, some flow paths are omitted (e.g., the flow paths from each Blackhat release cycle rectangle to the security 

assessment cycle triangle). 
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converge at the point in which software-makers handle vulnerabilities. 

Throughout all these stages and across SSL iterations, the software-maker uses knowledge management (KM)  

to support continual improvements to security quality and provides customers with interim strategies for reducing risk.  

Moreover, the SSL explains customer perception of security quality through software-maker or third-party information, 

software products (i.e., new releases or updates), and external software threats.  

Phase- outMat ur i t y Sat ur at i on Decl i neI nt r oduct i on Gr owt hSt ar t
 

Figure 1-6:  SSL iterations within each product lifecycle model stage 
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Figure 1-7:  Software security lifecycle from the software-maker perspective 



10 

 

Table 1-2 describes SSL stage activities in further depth and indicates that vulnerability discovery occurs within 

the security assessment stage, which is discussed in Section 1.2.3.2. 

Table 1-2:  SSL stage activities from the software-maker perspective 

Stage Description of activities 

Product planning Decision-makers assign critical resources and define or refine overarching product 
security requirements, policy, processes, budgets, and schedule milestones. A 
decision to retire a product occurs at this stage, effectively rendering existing 
vulnerabilities obsolete. 

Major/patch 
release cycles 

Software-makers create new software using a security-focused IID model that 
includes steps for requirements, design, implementation, verification, and release. 
Occurring at this stage are fault creation (i.e., origin of the mistake), prevention (e.g., 
prerelease discovery with subsequent removal), removal (e.g., post-release discovery 
with subsequent removal), and mitigation (e.g., interim updates to reduce customer 
exposure).  

Security 
assessment 
cycles 

See Section 1.2.3.2 for details. Vulnerability discovery occurs at this stage. 

Exploit/malware 
release cycles 

External Blackhat software-makers create and release exploit software and malware; 
customer risk exposure escalates. 

Third-party 
security entity 
release cycles 

External Whitehat entities create and release security support software (e.g., anti-
malware or static analysis tools for locating vulnerabilities); these external products 
support risk mitigations for customers. 

Vulnerability 
handling 

Security teams perform inspections to confirm discoveries, and when necessary 
subsequently perform root-causal analyses and risk assessments, and prepare 
upcoming major or security update release requirements. 

1.2.3.1 Security development lifecycle (SDL) 

The SDL is a series of phases that augment the software development process presented next, comprise security-

focused activities, and produce additional deliverables supporting trustworthy computing goals (Howard and Lipner 

2006; Lipner 2004, 2-13). 

Amongst the many models for software development, this research chooses the iterative and incremental 

development model for demonstrating release cycles in the software security lifecycle.  The iterative and incremental 

development (IID) model for software consists of a series of sequential, smaller release iterations, each of which builds 

on the previous (Larman 2004).  Major release cycles for large software typically include numerous internal iterations.  

Conversely, update cycles for security releases usually consist of no more than one or two internal iterations.   

In the software lifecycle, there are common definitions that describe maturity levels for major and security 

update releases.  Figure 1-8 identifies the five typical versions for major releases in large software development as 
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ñpreliminaryò, ñalphaò, ñbetaò, ñcandidateò, and ñmajorò5.  Each release version could involve one or more IID 

sequences.  Preliminary releases demonstrate a limited subset of features and are internal to the software-maker.  Alpha 

releases are also internal but demonstrate a more complete subset of the overall feature requirements.  Beta releases 

support most feature requirements; typically, the software-maker presents this version internally and to a small group of 

external users.  Candidate releases support all feature requirements and software-makers present these versions internally 

and externally.  Major releases freeze development (i.e., during this iteration software-makers only allow modifications 

supporting correction for critical issues) and software-makers distribute these as the final public release (Cusumano and 

Yoffie 1999, 60-69).  In a slightly similar fashion, versions for security update releases typically have one internal 

candidate release prior to the final public security update release (see Figure 1-9). 
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Figure 1-8:  Iterative and incremental development model for a major release cycle 
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Figure 1-9:  Iterative and incremental development model for an update release cycle 

                                                                            

5 This set of software releases is based on those provided by (Cusumano and Yoffie 1999, 60-69). 
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Iterations in the incremental and iterative development (IID) process for software typically execute the activities 

and phases listed in Figure 1-10 and in IID, the scope for each of the self-contained phases varies over time (Larman 

2004).  To explain, the effort proportions for each of the IID phases depend on the maturity of the corresponding iteration.  

For example, earlier iterations typically emphasize the requirements and design phases, while later ones have an emphasis 

on implementation and verification.  Table 1-3 describes IID preparation and continuous support activities, and Table 1-4 

provides brief descriptions for the IID phases.  Additionally, it incorporates the trustworthy computing security 

development lifecycle (SDL) into this IID process.  Last, it is worthwhile to point out the step similarities with the 

traditional waterfall development model (Royce 1970, 1-9) and the strong connections between a product (i.e., the system) 

and software. 
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Figure 1-10:  Iterative and incremental software development process 
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Table 1-3:  IID activity descriptions 

Activity name 

(timing) 

Description 

Product 
planning 
(preparation) 

Product planning activities set the stage for the cycle.  Decision-makers at the 
software-maker determine product needs/goals/objectives, define some of the critical 
product and process requirements, allocate resources to initiate the first few phases, 
and identify major schedule milestones for the initial lifecycle phases. 

Knowledge 
management 
(continuous) 

Knowledge management (KM) ñleverages relevant intellectual assets to improve 
organizational performanceò (Stankosky 2002).  KM is a multi-disciplinary approach to 
retaining and growing organizational knowledge that supports all phases and iterations 
in the IID process.  Among other things, the KM solution within an organization 
provides technology to archive and locate specific information or personnel, training, 
lessons learned from previous products, and technical information from present and 
past software release cycles. 

Table 1-4:  IID phase descriptions 

Phase 
number:  

Name 

Description 

Phase one:  

Requirements 

Activities that include ñelicitation, analysis, specification, validation, and managementò 
(Bourque and Fairley 2014) of software requirements (e.g., necessary software 
features, functions, capabilities, performance, interfaces, constraints, and so on) 

Phase two:  

Design 

Activities supporting translation of the requirements into specifications that describe the 
software structure and provide a foundation for constructing the product (Bourque and 
Fairley 2014) 

Phase three:  

Implementation 

ñCoding, verification, unit testing, integration testing, and debuggingò related activities 
supporting software creation (Bourque and Fairley 2014) 

Phase four:  

Verification 

Activities supporting evaluation of the quality of a software release (e.g., static and 
dynamic inspection) and confirmation that the product satisfies all requirements 
(Bourque and Fairley 2014) 

Phase five:  

Release 

Activities supporting generation and distribution of the various staged versions of a 
product (i.e., preliminary, alpha, beta, release candidate, and major release) 

1.2.3.2 Vulnerability discoveries in the SSL 

The problem of information security (i.e., vulnerability discovery external to software-makers) is grounded 

within the context of the SSL and its security assessment cycles.  The security assessment cycles within the SSL 

implement the agile process for vulnerability discovery6.  To describe these cycles, this research presents an iterative 

                                                                            

6 Software engineering processes support controlling complexity, managing scope, meeting schedule and cost constraints, 

and improving team performance. Agile processes enable some of the same concepts but support dealing with uncertainty 

and provide maneuverability (e.g., managers can monitor status and readjust goals at each iteration or sprint) (Larman 

2004). 
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software security assessment process (ISSAP), which is a scientific method for reviewing software security quality that 

applies to all entities performing security assessments.  The ISSAP, shown in Figure 1-11, starts with assessment planning 

(at the upper-left corner) and proceeds clockwise.  As part of planning, analysts set overall security assessment goals and 

exit conditions, construct prioritized task backlogs, and assign key personnel to the top priority tasks.  Then, analysts 

gather and prepare software release artifacts for assessment, perform artifact reverse engineering (RE), formulate 

vulnerability hypotheses and relevant functional tests, implement and verify tests on artifacts, and assess security quality 

of artifacts.  Benevolent researchers document and report results for their final step; alternately, malicious researchers 

develop and release corresponding exploits and malware that use the vulnerabilities discovered in their assessment cycle.  

Additionally, knowledge-management (KM) activities enhance assessment performance throughout ISSAP iterations.  

As time and resources allow, analysts perform subsequent ISSAP cycles, each time reviewing the results from the 

previous cycle and then continuing with another iteration.  Table 1-5 provides further details about ISSAP steps.  
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Figure 1-11:  Iterative software security assessment process (ISSAP) 

Table 1-5:  ISSAP steps 

Step Description of activities 

Gather 
artifacts and 
information 

Analysts gather relevant software artifacts and information from the software release 
(e.g., design information, source code, binary artifacts, etc.). 

Prepare 
artifacts 

Analysts perform preparation activities, including inspection and reformatting of binary 
artifacts, binary disassembly into assembly language, and assembly-language 
decompilation into higher-level programming languages. 

Comprehend 
artifacts 

Analysts work towards attaining artifact comprehension, which involves software RE 
and includes performing static analysis and dynamic analysis on available software 
artifacts. 

Formulate 
hypotheses 
and related 
tests 

Analysts formulate or use pre-existing threat models to identify potential attack surfaces 
and then use these threat models to formulate hypotheses for potential vulnerabilities 
that could have higher impact; analysts also consider tests or analysis procedures for 
evaluating these hypotheses. 
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Step Description of activities 

Implement and 
verify tests on 
artifacts 

Analysts test functional boundaries (a.k.a., fuzz testing) or vulnerability hypotheses on 
the target product or similar devices providing target emulation. 

Assess 
security quality 

Analysts confirm suspected vulnerability locations in the artifacts.  Analysts then 
prepare the security assessment document and report results. 

1.2.3.3 Vulnerabilit y disclosure and handling 

Two recent standards provide processes for vulnerability disclosure to software-makers (ISO/IEC 29147) and 

vulnerability handling by software-makers (ISO/IEC 30111).  Figure 1-12 outlines these two processes and their 

relationships with each other.  The first standard, ISO/IEC 29147, outlines recommendations for external entities 

performing security assessments to disclose vulnerabilities they discover to the software-maker and additionally sets 

expectations for the software-makerôs response (International Organization for Standardization 2014).  The second 

standard, ISO/IEC 30111, outlines recommendations for software-makers in responding to post-release vulnerability 

discoveries (International Organization for Standardization 2013). 
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Figure 1-12:  ISO/IEC 29147, ISO/IEC 30111 processes 
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Respectively, these are the vulnerability disclosure and vulnerability handling processes. 

The ISO/IEC 30111 related sub-process for vulnerability resolution and remediation (see Figure 1-13) 

presented by this research stems from industry best practices (Lipner 2016).  To minimize resolution delivery time for 

security updates addressing those vulnerabilities designated as critical, inspection and preparation of security patch 

requirements begins straightaway and the output subsequently supports an immediate out-of-band security patch update.  

For all vulnerabilities, there are inspections that result in identification of systemic problems.  For those identified as 

systemic, the software-maker must make a decision for design and development of an automated discovery tool.  All 

vulnerability discoveries resulting from manual and automated tool identification have detailed inspections and security 

patch requirements prepared.  For vulnerabilities classified with negligible user impact, deferment of security update 

releases to the next scheduled release is common industry practice. 
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Figure 1-13:  Vulnerability resolution and remediation process 

1.3 Strategies to reduce risk 

Fortunately, strategies do exist to reduce risk and ensure customer satisfaction in security quality throughout 

the software security lifecycle (SSL).  Software-makers can refine processes and policies, reallocate critical resources, 

and alter release-cycle requirements or constraints (e.g., feature requirements or schedule and budget limitations).  These 

adjustments have two foci of application for reducing post-release discovery risk and minimizing its impact: Area1 and 

Area2 (see Figure 1-14).  Activities in Area1 (red) aim to improve security quality prerelease (Williams, Gegick, and 
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Vouk 2008), while Area2 (green) activities seek to control customer perception of security quality post-release7 (Petter, 

DeLone, and McLean 2013, 7-62).  Area2 is divided into two sections: Area2-A, in which the goal is to reduce customersô 

threat of exposure (e.g., by decreasing service-response times for discoveries or including fault tolerance by design 

methods); and Area2-B, in which the goal is to inhibit the discovery of vulnerabilities by entities with malicious intent 

(Collberg and Thomborson 2002, 735-746).  Unfortunately, due to the high costs of achieving quality, managers must 

often decide which alternatives will provide maximal impactða decision that is aided by the security modeling 

techniques discussed next.   
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Figure 1-14:  Mitigation alternatives and application areas 

                                                                            

7 The customer perception of security quality can be influenced by software-maker information-sharing (e.g., public 

transparency or prompt security risk notification) and service quality (e.g., security patch response time) (Petter, DeLone, 

and McLean 2013, 7-62), as well as through design information security (Parker 1997, 572-582) and the inclusion of 

techniques inhibiting public discovery of vulnerabilities (Collberg and Thomborson 2002, 735-746). 
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Chapter 2.  Literature Review 

 

This chapter presents the origins for security modeling, formally introduces vulnerability discovery modeling 

(VDM) techniques, and outlines areas for their improvement. 

2.1 Security modeling origins 

Security quality modeling requires historical information and this warrants a brief synopsis of the public 

vulnerability database origins.   

Archives from the early 1980s through the turn of the century contain the digital footprints for the initial security 

assessment movement.  Notable sources of information were the alt.security and comp.security.unix USENET 

newsgroups (Bishop 1995), the 26008 and Phrack9 nonstandard publications, the ACM RISKS digest mailing list 

(Neumann 1985, 1), and the BugTraq mailing list (SecurityFocus 2006).  Amongst these and other sources, an increase 

occurred in publications that detailed common vulnerabilities and their corresponding exploitation techniques.  Notable 

examples included: ñSmashing the Stack for Fun and Profitò (i.e., stack overflows) (aleph1 1996); ñReturn into libcò (i.e., 

return-oriented programming) (solar designer 1997); ñNT Web Technology Vulnerabilitiesò(i.e., SQL injection) 

(rain.forest.puppy 1998); ñOnce Upon a Freeò (i.e., heap overflows) (anonymous 2001); ñExploiting Format String 

Vulnerabilitiesò (scut/team teso 2001); and ñBasic Integer Overflowsò (blexim 2002).   

In the 1990s, the growth in vulnerability and exploit specific knowledge and the increasing frequency in security 

failures significantly raised public awareness of the existence of security faults and of the phenomena supporting their 

discovery.  In 1999, creation of the common vulnerabilities and exposures (CVE) database answered the multiple calls 

in the literature for a public historical vulnerability database (Baker et al. 1999; Aslam, Krsul, and Spafford 1996).   

The combination of discovery event information from vulnerability databases, software characteristic data from 

code repositories, and recorded engineering process execution metrics all provide valuable data for exploratory studies.  

For this problem phenomenon, research areas of interest focused on factors possibly influencing the discovery of software 

                                                                            

8 First appearing in 1984 (Goldstein 2009). 

9 First appearing in 1993 (SecurityFocus 2006). 
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vulnerabilities.  Scholars applied software quality modeling techniques using information from these sources for better 

understanding of the discovery phenomenon. 

2.2 Vulnerability discovery modeling (VDM)  

One important software security modeling technique, vulnerability discovery modeling (VDM), helps 

managers make decisions on how best to reduce risk10.  Simply put, VDM techniques forecast security fault discoveries 

over time (Alhazmi and Malaiya 2008, 14-22).  

Vulnerability discovery models are an application of software reliability models that uses patterns found in 

historical discovery events following a software release (SR) to make predictions of discovery-event counts over time.  

They enable managers to allocate resources for subsequent release cycles that help ensure post-release vulnerability 

handling quality and response times remain satisfactory (see Area2 in Figure 1-14).  VDM methods, demonstrating 

varying levels of success, include:  linear and polynomial regression models (Alhazmi, Malaiya, and Ray 2007, 219-228; 

Alhazmi and Malaiya 2008, 14-22; F. Massacci and V. H. Nguyen 2014, 1147-1162; Ruohonen, Hyrynsalmi, and 

Leppänen 2015, 1-20; Rescorla 2005, 14-19); growth-curve models (Alhazmi, Malaiya, and Ray 2007, 219-228; Alhazmi 

and Malaiya 2008, 14-22; Woo et al. 2011, 50-62; Joh and Malaiya 2014, 1445-1459; F. Massacci and V. H. Nguyen 

2014, 1147-1162; Ruohonen, Hyrynsalmi, and Leppänen 2015, 1-20); models based on the nonhomogeneous Poisson 

process (NHPP, see Appendix B.2) (Rescorla 2005, 14-19; Alhazmi and Malaiya 2008, 14-22; Okamura, Tokuzane, and 

Dohi 2013, 15-23; F. Massacci and V. H. Nguyen 2014, 1147-1162; V Nagaraju, L Fiondella, and T Wandji 2017, 31-

50; Rahimi and Zargham 2013, 395-407); effort-based models (Kimura 2003, 279-287; Kimura 2006, 256-261; Alhazmi 

and Malaiya 2005, 615-620; Woo et al. 2011, 50-62; Ozment 2006, 25-36); time-series models (Roumani, Nwankpa, and 

Roumani 2015, 32-40); and various specialty models (Anderson 2002; Rahimi and Zargham 2013, 395-407).  Table 2-1 

lists select VDMs demonstrated in the literature and, where applicable, their originating software reliability counterparts. 

Table 2-1:  VDM technique cross reference 

VDM VDM Source 
Software Reliability Model 
Source 

Thermodynamic entropy model (Anderson 2002) (Brady, Anderson, and Ball 1999) 

NHPP, Software vulnerability 
assessment model 

(Kimura 2006, 256-261) 
(Yamada and Fujiwari 2001, 205-
218) 

                                                                            

10 Other modeling methods (e.g., release schedule modeling (Cavusoglu, Cavusoglu, and Raghunathan 2007, 171-185) 

and vulnerability prediction modeling (Williams, Gegick, and Vouk 2008)) exist, but are not useful here. 
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VDM VDM Source 
Software Reliability Model 
Source 

Quadratic (Second order 
polynomial) model 

(Rescorla 2005, 14-19) (Shooman 1976, 268-280) 

NHPP, exponential model (Rescorla 2005, 14-19) 
(Goel and Okumoto 1979, 206-
211) 

Logistic model 
(Alhazmi and Malaiya 2008, 14-
22) 

(Yamada and Osaki 1985, 1431-
1437) 

Gompertz model 
(Ruohonen, Hyrynsalmi, and 
Leppänen 2015, 1-20) 

(Yamada and Osaki 1985, 1431-
1437) 

Effort-based model 
(Alhazmi and Malaiya 2005, 615-
620) 

(J. D. Musa 1975, 312-327) 

Littlewood-Verrall Bayesian 
model 

(Ozment 2006, 25-36) (Littlewood and Verrall 1973, 77) 

NHPP, Musa-Okumoto 
logarithmic Poisson model 

(Ozment 2006, 25-36) 
(J. Musa and Okumoto 1984, 
230-238) 

NHPP, Moranda Geometric 
Poisson model 

(Ozment 2006, 25-36) (Moranda 1975, 327-332) 

Weibull model 
(Joh, Kim, and Malaiya 2008, 
299-300) 

(Schick and Wolverton 1978, 
104-120) 

NHPP, generalized Gamma 
model (includes exponential 
NHPP and logarithmic extreme-
value at min, aka Weibull) 

(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Hiroyuki, Mitsuaki, and Tadashi 
2007, 81-90; Goel 1985, 1411-
1423; Goel and Okumoto 1979, 
206-211) 

NHPP, Pareto model 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Littlewood 1984, 157-159) 

NHPP, truncated normal model 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Okamura, Dohi, and Osaki 
2013, 135-141) 

NHPP, log-normal model 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Achcar, Dey, and Niverthi 1998) 

NHPP, truncated logistic model 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Okamura, Dohi, and Osaki 
2004, 14-22; Ohba 1984, 144-
162) 

NHPP, log-logistic model 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Gokhale and Trivedi 1998, 34-
41) 

NHPP, truncated extreme-value 
min/max (Gompertz) 

(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Ohishi, Okamura, and Dohi 
2009, 535-543; Yamada 1992, 
964-969) 

NHPP, logarithmic extreme-value 
at max  (Frechet) 

(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Hirata, Okamura, and Dohi 
2009, 225-236) 

NHPP, hyper-Erlang 
(Okamura, Tokuzane, and Dohi 
2013, 15-23) 

(Okamura and Dohi 2008, 232-
239) 

Scrying method 
(Rahimi and Zargham 2013, 395-
407) 

NA 
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2.3 Improving VDM techniques 

To date, acceptance of discovery models is very limited because several related and significant challenges 

remain to be addressed.  First, no general pattern in web-browser discoveries exists (see NVD data issues discussion in 

Chapter 6); as well, there is the potential that one could make predictions prior to a general change in discovery trends 

(Woo et al. 2011, 50-62).  Clearly, factors not accounted for would explain the lack of patterns in the phenomenon over 

time (e.g., differences in skill and numbers of discoverers, return on investment for discovery of vulnerabilities, levels of 

design information security, amount of code-reuse, etc.).  Second, results from one application are not comparable to 

others (Ozment 2007, 6-11), as across applications there will be many differences in SR and SAP variables and these 

each influence the phenomenon differently.  Thus, the modeling results from a web-browser are not comparable to those 

from an operating system or even those from different web-browsers.  Third, the models do not provide a means to adjust 

SR and SAP variables, for exploring their influence on discovery.  Fourth, as pointed out by some (Ozment 2007, 6-11; 

F. Massacci and V. H. Nguyen 2014, 1147-1162), many applications of discovery models violate static code assumptions 

(e.g., see (Alhazmi and Malaiya 2005, 615-620; Alhazmi, Malaiya, and Ray 2007, 219-228; Alhazmi and Malaiya 2008, 

14-22; Woo et al. 2011, 50-62; Joh and Malaiya 2014, 1445-1459; V Nagaraju, L Fiondella, and T Wandji 2017, 31-50)). 

Because software-makers can refine processes and policies, reallocate critical resources, and alter release-cycle 

requirements or constraints (e.g., feature requirements or schedule and budget limitations), it would be very useful to 

model the influence from variables in these areas to support making related decisions.  Having a ñclear-boxò discovery 

model that incorporates using a well-defined set of variables for describing SR and SAP combinations would support 

decisions for strategies to reduce risk and ensure customer satisfaction.   

Unfortunately, only four VDM techniques include any SR and SAP input variables; the remaining techniques 

treat the problem as an uncontrollable ñblack-box.ò  Rahimi and Zargham (2013, 395-407) proposed the Scrying method, 

which is the sole VDM alternative using SR variables; however, this method requires access to source code and 

incorporates, out of numerous factors, only code-complexity and compliance rules.  An application of the mean-value 

function (MVF) from Musaôs basic execution time model (Alhazmi and Malaiya 2005, 615-620; J. D. Musa 1975, 312-

327), plus altered forms of the Musa-Okumoto logarithmic NHPP (Ozment 2006, 25-36; J. Musa and Okumoto 1984, 

230-238) and Yamada-Fujiwara testing-domain models (Kimura 2003, 279-287; Kimura 2006, 256-261; Yamada and 

Fujiwari 2001, 205-218) are the only VDM alternatives using SAP variables.  Unfortunately, their quality suffers from 
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SAP data limitations that correspond with vulnerability discoveries; as well, some violate the static code assumption for 

software reliability modeling (Ozment 2007, 6-11; F. Massacci and V. H. Nguyen 2014, 1147-1162) and they all 

incorporate only one SAP variable (i.e., assessment effort) via proxy measures11. 

Naturally, the dearth of both SR and SAP information and corresponding data for historical vulnerability 

discoveries has inhibited the introduction of multivariate VDM techniques.  Despite this, one can still make use of them 

through the Bayesian approach to analysis12 (Samaniego 2010), as it supports multiple types of data ï including expert 

opinion information.  Whatôs more, forecasting performance of VDM methods can also be improved by using Bayesian 

model averaging13 (Madigan and Raftery 1994, 1535-1546; Sarishvili and Hanselmann 2013, 1-8) and this is also enabled 

through an approach that includes expert judgment methods.   

                                                                            

11 E.g., Alhazmi and Malaiya define this proxy as Ὁ ВὟϽὖ , where Ὗ is the total number of users over time and ὖ 

is the percentage of users operating the software over time (Woo et al. 2011, 50-62). 

12 Bayesian methods are more suitable when the data are scarce as they enable the use of numerous and diverse 

information typesðincluding expert judgment (Samaniego 2010). 

13 Averaging over all the models results in better average predictive ability when compared to any single best model 

(Madigan and Raftery 1994, 1535-1546; Sarishvili and Hanselmann 2013, 1-8). 
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Chapter 3.  Research conceptual framework  

 

This chapter presents the overarching conceptual framework for this research in seven parts:  Section 3.1 lists 

the research questions; Section 3.2 identifies the research hypotheses; Section 3.3 introduces the purpose and usefulness 

of the research; Section 3.4 notes the fundamental assumptions for the research; Section 3.5 discusses several items 

pertaining to research scope and perspective; Section 3.6 provides the conceptual model; and Section 3.7 presents the 

research variables. 

3.1 Questions 

Investigation of this problem revealed four key research questions that associate with the following two areas:  

(1) ñHow do discoveries behave over time?ò, and (2) ñWhat VDM techniques were ideal?ò  The first research question, 

identified using RQ1, falls under question area (1) and was, ñHow does the baseline SR and SAP combination influence 

post-release vulnerability discovery over time?ò  The second one, identified using RQ2, also falls under question area (1) 

and was, ñHow do the covariates influence post-release vulnerability discovery over time?ò  The third, numbered RQ3, 

associates with question area (2) and was, ñWhat is the best óblack-boxô VDM technique?ò  The fourth and final research 

question, numbered RQ4, also associates with question area (2) and was, ñWhat is the best óclear-boxô VDM technique?ò 

3.2 Hypotheses 

Deliberation on the four research questions induced four corresponding hypotheses.  The first hypothesis, 

identified using RH1, associates with RQ1 and is, ñbaseline SR and SAP combinations have increasing then decreasing 

discovery rates over time.ò  The second is a set that associates with RQ2 and is identified using RH2.1-10.  These are 

listed below in Table 3-1 and each associates with one of the 10 covariates that are explored in depth (see Section 4.3.3 

for introduction of covariates associated with these hypotheses and Section 4.4.2 for the details concerning how these 

covariates are used in the multivariate models).  The third is identified using RH3, associates with RQ3 and is, ñBayesian 

model averaging is the best óblack-boxô VDM technique.ò  The fourth and last hypothesis is identified using RH4, 

associates with RQ4 and is, ñLinearly-scaled BMA is the best óclear-boxô VDM technique.ò 

Table 3-1:  Subset of hypotheses associated with RQ2 

ID Hypothesis 

RH2.1 Software size is negatively correlated with vulnerability discoveries over time. 
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ID Hypothesis 

RH2.2 Product price is negatively correlated with vulnerability discoveries over time. 

RH2.3 Assessment tool quality is positively correlated with vulnerability discoveries over time. 

RH2.4 Assessment personnel effort is positively correlated with vulnerability discoveries over time. 

RH2.5 Assessment personnel quality is positively correlated with vulnerability discoveries over time. 

RH2.6 Level of dynamic access to software is positively correlated with vulnerability discoveries 
over time. 

RH2.7 Amount of reused software is positively correlated with vulnerability discoveries over time. 

RH2.8 Amount of available design information is positively correlated with vulnerability discoveries 
over time. 

RH2.9 Amount of obfuscated software is negatively correlated with vulnerability discoveries over 
time. 

RH2.10 Amount of cleansed software is negatively correlated with vulnerability discoveries over time. 

3.3 Purpose and usefulness 

The purpose of this research is fivefold and includes:  1) presentation of the Kuo-Ghosh NHPP as a VDM 

technique; 2) presentation of BMA as a VDM technique; 3) presentation of a multivariate, time-dependent discovery 

model for software with its corresponding variable set; 4) demonstration of approaches for gathering multivariate data 

and for performing subsequent analysis of the multivariate model using this data; and 5) evaluation of the hypotheses 

listed in the previous section.   

This research is useful for the following reasons: 1) it can incorporate expert-judgment recommendations that 

bolster baseline analysis results (see NVD data issues discussion in Chapter 6); 2) it enables comparison of results from 

differing applications; 3) it supports trade studies for controllable variables (e.g., see forecasting examples in Section 

5.4.2); 4) it does not violate modeling assumptions for a static code base; and 5) its Bayesian approach alleviates the data 

sparseness issue, provides informative prior distributions, and naturally characterizes uncertainty in the model parameters. 

3.4 Assumptions 

This research depends on several key assumptions that facilitate its methods (see Table 3-2).  First, the research 

accounts for factors outside of the expertsô perspectives14 by making assumptions about various levels of release quality 

                                                                            

14 Post-release security fault discovery depends on prerelease fault creation and removal. 
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(Assumptions AS1-2).  Accordingly, this research investigates only the variables influencing post-release discovery15, 

thereby limiting the applicability of its results to Area2 (see Figure 1-14).  The following assumptions (i.e., AS1*, AS3-

5) come from a category of traditional software-reliability models based on the non-homogeneous Poisson process 

(NHPP, see Appendix B.2).  Assumptions AS1* (i.e., the alternate to AS1) and AS3-5, taken from Yamada et al. 

(Yamada, Ohba, and Osaki 1983, 475-484), are modified for modeling the discovery of software vulnerabilities in the 

baseline SR and SAP.  Assumptions AS6-7 are essential to modeling arbitrary SR and SAP combinations using the 

multivariate methods introduced by this research.  Assumption AS8 is historically used in software reliability modeling16.  

The final two assumptions relate to data elicitation.  Assumption AS9 eliminates an area of uncertainty in SR and SAP 

used to gain information about vulnerability discovery, and Assumption AS10 is necessary for the expert-judgment 

elicitation method.   

Table 3-2:  Key assumptions 

ID Description 

AS1 
A fixed number (i.e., ɾ ρτψȟυυȟςπȟχȟσ) of vulnerabilities is released for the respective elicitation 
scenarios 

AS1* 
The initial number of vulnerabilities within the software release is random (Yamada, Ohba, and 
Osaki 1983, 475-484) 

AS2 The types of vulnerabilities within the software release are random 

AS3 
A software release undergoing security assessment is subject to discovery of vulnerabilities at 
random times caused by security faults present in the release (Yamada, Ohba, and Osaki 1983, 
475-484) 

AS4 
The time between discoveries (k-1) and k depends on the time to discovery (k-1) (Yamada, 
Ohba, and Osaki 1983, 475-484) 

AS5 
Each time a discovery occurs, the vulnerability discovered is immediately removed, and no other 
vulnerabilities are introduced (Yamada, Ohba, and Osaki 1983, 475-484) 

AS6 
SR and SAP covariates are static throughout the security assessment of a particular software 
release (Cox 1972, 55-66) 

AS7 
Vulnerability discoveries over time, for arbitrary SR and SAP combinations, are realized by 
modulating (i.e., scaling) discoveries over time from the baseline SR and SAP 

AS8 
The elicited data, cumulative discoveries over time, are realizations of independent, identically 
distributed random variables 

AS9 The software binaries (described by SR variables, see Section 3.7) are available unencrypted 

                                                                            

15 In a situation in which the number of existing faults is unknown, Assumption AS1* would be substituted for 

Assumption AS1.   

16 There has been some debate over Assumption AS8 in the literature (e.g., there is the special case for the emergence 

of new vulnerability types, which typically results in numerous related discoveries following closely thereafter) 

(Ozment 2007, 6-11). 
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ID Description 

AS10 
The expert-provided distributions (see Section 4.3.2.1) are independent (i.e., Cooke classical 
model independence) 

3.5 Scope and perspective 

The research scope and perspective as well as external factors affect this study.  First, as structured elicitation 

requires working directly with experts, practical considerations (i.e., for the amount of work involved) limit the research.  

Accordingly, this research investigates factors that influence the discovery of vulnerabilities by academic security 

researchers performing security assessments17.  Figure 3-1 presents the typical roles; the red areas indicate those groups 

considered outside the scope for this research.  Second, this research does not include vulnerability type into the models 

because it would make the already complex elicitation process less manageable (see Assumption AS2).  Finally, two 

confounding factors require special attention regarding methodology:  return-on-investment (ROI) variables that can 

significantly influence certain SAP factors18 and software-maker decisions that can affect the quality of the artifacts 

released19.  In terms of controlling ROI variables, this research uses elicitation scenario construction (introduced in 

Sections 4.3.2.1 and 4.3.3) while Assumption AS1 (see Table 3-2) addresses the issue of confounding factors for release-

quality20. 

                                                                            

17 In defense, it is reasonable to speculate that the influence from most of the proposed non-ROI SR and SAP factors on 

vulnerability discovery should be generalizable outside the population of experts participating in this study. 

18 For example, the levels and quality of resources applied to security assessment should correlate positively with the 

return on investment.  

19 For example, skill of the developers or the resources applied to prerelease security assessment should influence 

release quality. 

20 For example, release details concerning participating software-makers (e.g., developer and tester skills, security quality 

assurance processes, and design specification complexity), would not be explicitly known by most external security 

analysts. 
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Figure 3-1:  Security researcher roles (expert population) 

3.6 Conceptual model 

The conceptual model describes research variables within factor groups (by listing them adjacent to each group) 

and illustrates their interactions (see Figure 3-2).  The groups include discovery return on investment (G1), the software-

maker business (G2), the software release cycle (G3), software release (G4), security assessment profile (G5), security 

reputation (G6), exploit or malware software release (G7), and security reputation propagation (G8).  In Figure 3-2, the 

green areas indicate the factor groups and those activities that fall within the scope of this research.  Notably, this model 

places vulnerability discovery within the security reputation factor group and contains factor groups for SR and SAP 

variables, illustrating these variablesô direct influence on security reputation. 
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Figure 3-2:  Proposed conceptual model and relevant factors 
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3.7 Variables 

Most security assessment tasks for external security analysts involve RE, which is analogous to performing 

product development backwards.  Application of the definition for a project to endeavors with vulnerability discovery-

related activities is a natural progression because persons routinely performing RE and security assessments can estimate 

the effort involved in a well-defined assignment.  As with a project for a development effort, security assessment tasks 

with a security assessment profile (SAP) have variables (e.g., those defining resource quality and availability) that 

influence schedule, cost, and technical performance.  Likewise, SR characteristics (e.g., software size, availability of 

design information, or anti-tampering features) would also influence the rate of vulnerability discoveries over time. 

Numerous variables influence vulnerability discovery, and choosing the appropriate set of variables enables 

the description of any SR and SAP combination from an external perspective.  Thus, for example, this research specifies 

an elicitation scenario as having a set of variable values that defines a SR and SAP for the post-release security assessment 

of a notional software system similar to a web-browser.  When experts have an explicitly defined SR and SAP 

combination included in the elicitation scenario, they can better estimate how the variables influence vulnerability 

discovery over time.  These variables, introduced briefly via hypothetical examples in Table 3-3, are listed by type (i.e., 

age, cost, complexity, SR information security, size/scope, security mechanisms, process, ROI, resource availability, and 

resource quality) and provided with the corresponding reasons that support their selection. 

Table 3-3:  Research variable overview 

Type 
Hypothetical examples supporting selectionðwith 
reasoning 

References 

Age, 
Size/scope 

Levels of code-reuse between release cycles or the number 
of new features in a releaseðboth influence the amount of 
RE necessary 

--- 

Cost 
Limited budget for personnel, tools or test unitsðeach 
influences performance 

--- 

Information 
security 

Availability of source code, design information, or binary 
artifactsðall influence the amount of RE necessary 

(Eilam 2011; Collberg 
and Thomborson 
2002, 735-746; 
Samuelson and 
Scotchmer 2002, 
1575-1663) 

Binary artifact cleansing and obfuscationðeach influences 
RE performance 

Process Use of an established processðinfluences performance 
(Gibson, Goldenson, 
and Kost 2006) 
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Type 
Hypothetical examples supporting selectionðwith 
reasoning 

References 

Security 
Dynamic access (a.k.a. debug) levels or the presence of 
anti-tampering features on products running the softwareð
each influences performance 

(M. N. Gagnon, S. 
Taylor, and A. K. 
Ghosh 2007, 82-84; 
Collberg and 
Thomborson 2002, 
735-746) 

Return on 
investment 
(ROI) 

Potential annual unit sales or customer exposureðeach 
influences resources applied 

(Bambauer and Day 
2010, 1051-1107; van 
Eeten and Bauer 2008, 
1-69; Anderson 2001, 
358-365) 

Processor architecture market shareðinfluences resources 
applied 

Monetary compensation for vulnerability disclosuresð
influences resources applied 

Monetary compensation from the exploitation of usersð
influences resources applied 

Criminal penaltiesðinfluence resources applied 

Complexity System or software complexityðinfluences performance 
(E. J. Chikofsky and J. 
H. Cross 1990, 13-17) 

Coding 
Language 

Type of development languageðinfluences RE performance (Eilam 2011) 

Size/scope 

Software size (as measured from disassembled or 
decompiled binaries, or original source code)ðinfluences 
performance 

(Howard and Lipner 
2006; Anderson 2001, 
358-365) Proportion of software size that is security sensitiveð

influences performance 

Resource 
availability 

Availability of analystsðinfluences performance 

(Ozment 2007, 6-11) 
Levels of shared security assessment CPU resources 
availableðinfluences performance 

Availability of equipment capable of natively executing the 
softwareðinfluences performance 

Resource 
quality 

Analyst experience or skill levelðinfluences performance (Eilam 2011; Ozment 
2007, 6-11; Weiser 
1982, 446-452) Analysis tool qualityðinfluences performance 

To enable the description of any SR and SAP combination, the numerous variables influencing vulnerability 

discovery are now described from a perspective that is external to software-makers.  First, their notation defines SR and 

SAP combination ● ὼ ὼ Ễ ὼ  and ● ὼ ὼ Ễ ὼ , that each respectively represent 

covariates in baseline and arbitrary scenarios describing the post-release security assessment of notional software 

systems.  For each variable ὼ in ●, where Ὦ ρȟςȟỄȟὲ, Table 3-4 includes pertinent details such as identifier, 

description, type, baseline value(s), and its corresponding metric unit.  Most of these variables are reasonably self-

explanatory and, in the interest of brevity, elaboration is provided using footnotes only when necessary.  Generally, the 
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baseline values were chosen to either ensure non-zero discoveries over time or to control the effects from confounding 

variables. 

Table 3-4:  Select variables that are pertinent to security assessment 

ID Description Type 
Baseline 
value(s) 

Metric unit 

ὼ 
% (percent) of functions reused from 
previous release 

Age 25 % 

ὼ 
Software product lifecycle phase 
(see Figure 1-6) 

Age Growth Categorical 

ὼ Product unit retail price Cost 10,000 US $ 

ὼ Software unit retail price Cost 5,000 US $ 

ὼ  
% of functions in structural 
complexity levels 1-4, 21 

Complexity 10, 20, 40, 30 % 

ὼ  
% of functions in information flow 
complexity levels 1-4, 22 

Complexity 10, 20, 40, 30 % 

ὼ  
Central processing unit (CPU) 
complexity level 1-5, 23 

Complexity 2 1-5 rating24 

ὼ  
Software system virtualization 
complexity rating 1-4, 25 

Complexity 3 1-4 rating 

ὼ  
Software system concurrency 
complexity rating 1-5, 26 

Complexity 2 1-5 rating 

ὼ  
% of functions with source code 
available 

Information 
security 

10 % 

ὼ  % of functions that are cleansed  
Information 
security 

25 % 

ὼ  
Publicly available % of design 
information27 

Information 
security 

25 % 

                                                                            

21 Function structural complexity as defined by the following: 1-ñuntestable,ò cyclomatic complexity (CC) score >50; 2-

ñcomplex,ò CC score 21-50; 3-ñmore complex,ò CC score 11-20; 4-ñsimple program,ò CC score 1-10 (McCabe 1976, 

308-320; Software Engineering Institute 1997) 

22 Function information flow (IF) complexity as defined by the following: 1-IF4 score, ρπ; 2-IF4 score, ρπ ρπ;  
3-IF4 score, ρπ ρπ; 4-IF4 score ρπ ρπ (Henry and Kafura 1981, 510-518; Shepperd 1990, 3-10) 

23 CPU complexity as defined by the following: 1-greater than 64-bit multi-core; 2-64-bit multi-core; 3-32-bit single or 

multi-core; 4-16-bit; 5-8-bit 

24 All variables were constructed with ratings such that the highest rating would result in the most discoveries.  This is a 

methodology constraint necessary for the second phase of the research (Szwed et al. 2006, 157-177). 

25 Software virtualization complexity as defined by the following: 1-multiple guest OSôs in a host OS; 2-guest OS in a 

host OS; 3-host OS; 4-no OS; 

26 Software concurrency complexity as defined by the following: 1-(>150) processes; 2-(50-150) processes; 3-(11-50) 

processes; 4-(2-10) processes; Level 5-no concurrency (i.e., 1 process) 

27 An open source product defines 100%; practitioners must estimate everything else relative to this condition. 
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ID Description Type 
Baseline 
value(s) 

Metric unit 

ὼ  
Publicly available % of design 
related binary artifacts28 

Information 
security 

25 % 

ὼ  % of functions that are obfuscated 
Information 
security 

25 % 

ὼ  
% of functions developed in 
assembly language 

Development 
language 

5 % 

ὼ  Security assessment process29 Process Incomplete 
Capability level 
rating 

ὼ  
Security assessment personnel 
effort30 

Resource 
availability 

10 

FTEs31 

(40 hour / week 
per FTE) 

ὼ  

Available shared security 
assessment CPU resources 
(separate from individual team 
member PCs) 

Resource 
availability 

100 
Total CPU cores 
(available 24*7 
hour / week) 

ὼ  
Total product budget available for 
the security assessment 

Resource 
availability 

30,000 US $ 

ὼ  
Available equipment capable of 
natively executing software 

Resource 
availability 

11, 32 Total units 

ὼ  
Average assessment team 
experience with product technology 

Resource 
quality 

12 Months 

ὼ  Security assessment tool quality33 
Resource 
quality 

3 1-5 rating 

                                                                            

28 For example, software-maker binaries (i.e., used in production or maintenance) that are not included with the product 

release 

29 The following security assessment process area capability levels are defined using the capability maturity model 

integrated (CMMI) for development (continuous representation): 1-ñincomplete,ò no process or partial implementation 

of an assessment process; 2-ñperformed,ò accomplishes security assessments and assessment goals are satisfied; 3-

ñmanaged,ò security assessments are planned and executed in accordance with general policy; 4-òdefined,ò general policy 

for security assessments is tailored, using guidelines, specific for each assessment project (Software Engineering Institute 

1997). 

30 In constructing the elicitation scenarios, the baseline level for this covariate was intentionally elevated to ensure 

discoveries would occur (modulation is only possible when expected baseline discoveries over time are greater than zero). 

31 Full-time equivalent number of personnel 

32 For the baseline, the personal computers for the 10 FTEs (Ø ) are capable of natively running the software and there 

is additionally one product unit available. 

33 Tool quality is defined by the available RE tool value, with respect to average disassembly and decompile task 

effectiveness (% correct), completeness (% complete), and completion speed (completion time).  The effectiveness and 

completion areas use the following ranges: 1-ñvery poorò (0-20%); 2-ñpoorò (20-40%); 3-ñgoodò (40-60%); 4-ñvery 

goodò (60-80%); and 5-ñidealò (80-100%).  Completion time uses the following scale: 1-ñvery slowò (hours); 2-ñslowò 

(tens of minutes); 3-ñnormalò (several minutes); 4-ñfastò (tens of seconds); and 5-ñvery fastò (several seconds or less). 
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ID Description Type 
Baseline 
value(s) 

Metric unit 

ὼ  
Security assessment average 
personnel quality34 

Resource 
quality 

3 1-5 rating 

ὼ  Potential annual unit sales ROI 1,000,000 
Units sold per 
year 

ὼ  Processor architecture market share ROI 96 % 

ὼ  Potential software-maker rewards ROI 20,000 US $ 

ὼ  Potential black-market rewards ROI 0 US $ 

ὼ  Potential malware profits per install ROI 0 US $ 

ὼ  Potential criminal penalties ROI 0 Prison years 

ὼ  Potential legal cost liabilities ROI 0 US $ 

ὼ  
Average number of users interfacing 
with a product instance each year 

ROI 1,000 
Users per unit 
per year 

ὼ  
Average number of user security 
sensitive transactions each year 

ROI 52 
User 
transactions per 
year 

ὼ  
Level of dynamic access to 
artifacts35 

Security 4 1-5 rating 

ὼ  
Design anti-tamper security rating 1-
5, 36 

Security 4 1-5 rating 

ὼ  Total number of functions Size, scope 1,000 Functions 

ὼ  
% of functions that are security 
sensitive 

Size, scope 40 % 

ὼ  % of functions in size range 1-4, 37 Size, scope 10, 20, 40, 30 % 

Cumulative vulnerability discoveries, ὔὸ or ὔ†, will  be interval-grouped by time, ὸ, and assessment time, 

†.  The former is defined by 10-calendar week time intervals, ὸּב ȟὸּב  for ּב ρȟςȟȣȟꞋ υ (i.e., [0,10), [10, 20), [20, 

30), [30, 40), [40, 50) weeks).   The latter is defined by equivalent security assessment time, †, †ּב ȟ†ּב  for ּב

                                                                            

34 Security assessment average personnel quality is described as the team average personnel skill level (rated per the 

Dreyfus scale), which are: 1-ñNovice,ò 2-ñAdvanced beginner,ò 3-ñCompetent,ò 4-ñProficient,ò and 5-ñExpertò (Dreyfus 

2004, 177-181). 

35 The level of dynamic access to artifacts is defined as the level of software control when executing on target (or target-

similar) hardware, and the levels are categorized as follows: 1-none; 2-partial debug control on target-similar device; 3-

limited privileges (i.e., user mode) on target, software debugger available; 4-full privileges (i.e., administrative user 

mode) on target, software debugger available; and 5-full privileges, external hardware control for debugging on target. 

36 Design security effects in response to tampering detection are rated as follows: 1-failed, un-repairable (i.e., itôs a 

ñbrick,ò or useful only as a paperweight); 2-impaired, un-repairable; 3-failed, repairable with significant associated 

costs/delay; 4-impaired, repairable with some associated costs/delay; and 5-negligible effect or repairable with negligible 

associated costs/delay. 

37 Rated per the following function size ranges in assembly language lines of code (ALOC): 1->1000, with median=1250 

ALOC; 2-250-1000, with median=750 ALOC; 3-50-250, with median=200 ALOC; and 4-1-50, with median=40 ALOC. 
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ρȟςȟȣȟꞋ υ  (i.e., ὼ ὊὝὉϽτπ
 

ϽὸύὩὩὯ, or [0,4000), [4000, 8000), [8000, 12000), [12000, 16000), 

[16000, 20000) SA hours, where ὼ  is defined later in this Sub-section). 
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Chapter 4.  Methodology 

 

This chapter first introduces key concepts for the methodology and then provides the details in four subsequent 

parts.  The approach fundamentals for eliciting expert judgment and performing Bayesian analysis are provided in Section 

4.2, data-gathering details are presented in Section 4.3, Bayesian analyses of VDM techniques are outlined in Section 

4.4, and their implementations within MCMCBayes are introduced in Section 4.5. 

4.1 Introduction  

Historically, the counts of post-release vulnerability discoveries have varied over time, and previous studies 

have used ñblack-boxò techniques to describe this phenomenon for a single SR and SAP (i.e., one software product and 

its associated post-release environment).  However, vulnerability discovery for differing SR and SAP combinations (i.e., 

all the possible types of software and their post-release surroundings) depends on many factors.  As well, the application 

of time-dependent, ñclear-boxò multivariate models enables prediction for arbitrary SR and SAP combinations of interest 

ï to those using VDM techniques.  The selected class of multivariate models are now introduced. 

These models perform scaling perturbations on a time-dependent, baseline function (see Figure 4-1, upper-left 

side) using parametric modulation (see the same, lower-left side).  Model justification is supported by augmenting a 

performance-weighted average model for discoveries in a single SR and SAP with the inclusion of a new capability that 

parametrically scales a reference output ï which stems from modeling the baseline SR and SAP ï per an input set of 

variables describing the arbitrary SR and SAP of interest.   

The general equation for modeling the mean-value function (MVF) in the Ὥth SR and SAP combination, ●, that 

represents the corresponding average discoveries over time in ● (i.e., Ὁὔὸȟ● ), is 

Ὢὸȟ●ȿ● ὪὸϽί● Ȣ τȢρ 

The two terms in the equation are Ὢὸ, which represent:  1) the baseline function for assumed non-zero average 

discoveries over time in ● (i.e., Ὁὔὸȿ● ; and 2) a modulation term, ί● .  Equation τȢρ provides an estimate for 
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Ὁὔὸȟ●  in ● by perturbing the baseline function, Ὢὸ, with the ί●  scaling function38.  Notably, ί●  uses the ● 

vector of variables to describe the SR and SAP combination of interest and scales Ὢὸ so that it becomes Ὢὸȟ●ȿ● .  

I also note that using Equation τȢρ to generate the ratio of discoveries between SR and SAP combinations ● 

to ●, while constraining ί● π in the ratio set construction, simplifies to 

Ὢὸȟ●ȿ●

Ὢὸȟ●ȿ●

ί●  

ί●
ȟ τȢς 

(Soyer and Tarimcilar 2008, 266-278)Ȣ  It is important to realize that in these ratios, the baseline terms cancel.   

Consequently, there is no dependence in Equation τȢς on ● or the time ὸ, and this facilitates a two-phased 

methodology approach.   Phase I elicits the baseline SR and SAP dataset, ╓  (introduced in Section 4.3.2), and performs 

"black-box" modeling of the phenomenon in a baseline SR and SAP (i.e., it models Ὢὸ).  Phase II uses results from 

Phase I, elicits the multivariate dataset, ╓Ⱦ╓  (introduced in Section 4.3.3), and supports "clear-box" modeling of the 

phenomenon for arbitrary SR and SAP combinations (i.e., it models Ὢὸȟ●ȿ● , defined by Equation τȢρ). 

4.2 Approach fundamentals 

When predicting rare events, it is appropriate to choose the subjectivist, or evidential, view of probability 

(Samaniego 2010) and to perform data analysis using the Bayesian approach.   

At the highest level, this two-phased methodology approach performs a general sequence of elicitation and 

analysis steps for each phase.  These include elicitation preparation (E1), elicitation execution (E2), expert calibration 

and elicited data-cleansing (E3), elicited data aggregation (E4), empirical data-gathering (DG), and Bayesian analysis 

(AN1-10) using all the data.  The center of Figure 4-1 depicts this methodology sequence for both phases; its right side 

details the analysis steps.   

                                                                            

38 This abstraction loosely generalizes the modulation notion from (Cox 1972, 55-66; Soyer and Tarimcilar 2008, 266-

278) to all the baseline functions. 
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Figure 4-1:  Methodology Overview 
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4.2.1 Cookeôs method 

Because the data for discoveries over time are scarce, structured expert judgment was elicited, based on the 

Cooke classical model (CCM) approach (Cooke 1991), to provide a dataset that enables estimating an informative 

Bayesian prior (Phase I) and using the multivariate model (Phase II).  Cookeôs method provides rational consensus in the 

exploration of problems involving decision processes with ñsubstantial scientific uncertaintyò (Cooke and Goossens, L 

L H J 2008, 657-674).  The structured, expert-judgment elicitation process associated with Cookeôs method (Cooke 1991) 

for gathering data comprises elicitation preparation (E1), elicitation execution (E2), expert calibration and elicited data-

cleansing (E3), and elicited data aggregation (E4) (see Figure 4-2). 

E1,  Pr epar e el i c i t at i on 

f or  gat her i ng dat aset

E2,  Execut e el i c i t at i on 

sessi ons t o gat her  dat aset

E3,  Cal i br at e exper t s 

and cl eanse dat aset

E4,  Aggr egat e 

dat aset

╓ 
 

Figure 4-2:  Expert judgment steps E1-E4 

E1, elicitation preparation, consists of the detailed design, development, and verification of the elicitation 

methodology, including necessary support modules (e.g., scenario details, elicitation questionnaires, assessment 

exercises, etc.).  A pilot elicitation session is typically conducted to provide an early evaluation of this elicitation material, 

which may result in some of the materials requiring subsequent refinement.       

E2, elicitation execution, is the expert-judgment workshop that uses E1 materials to gather relevant, expert 

knowledge in a structured manner.  For every workshop activity, experts receive instructions and subsequently perform 

elicitation tasks independently.  In executing these tasks, they provide information with regard to data of interest, data-

cleansing, and data aggregation.  For Cookeôs method, all data is elicited in a point-estimate format that specifies a 
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Ñ ϷȟÑ ϷȟÑ Ϸ set of quantiles that contribute to defining a distribution (i.e., percentiles that divide the probability 

space into four bins, see Figure C-1 in Appendix C).  The corresponding distribution extremes, Ñ Ϸ and Ñ Ϸ, derive 

from the complete expert data-set (i.e., Ñ ϷȟÑ ϷȟÑ Ϸ from all the experts) (Cooke 1991).  Experts specify point-

estimates for the specified phenomenon (e.g., expected vulnerability discoveries in a time interval), for each of 

Ñ ϷȟÑ ϷȟÑ Ϸ.  To enable E3, experts also answer a series of seed-item (a.k.a., calibration) questions by providing 

another set of corresponding point-estimates.  Under CCM, these seed questions, each having known answers ( , for 

the questions Ὥ ρ to ה) in quantitative form, support expert-score calibration (i.e., generation of calibration scores) and 

elicited data cleansing (Cooke 1991). 

E3, expert calibration and elicited data-cleansing, weighs expertsô opinions and cleanses their data based on 

how well each specifies the distribution point-estimates for the calibration-questions posed to them in E2 (Cooke 1991).  

The CCM sequence assesses individual, expert-estimation performance against the   ,   , Ễ,  ה  answers and generates 

a normalized aggregation weight for each expert, thereby ensuring a data combination that emphasizes the results from 

the experts who performed well in the calibration exercises.  The computation of weights results from two scoring 

measures and a quality-level cutoff.  The first of these, the calibration score ὅὩ (see Appendix C), for the expert Ὡ, 

measures how well the expert specifies answers to the seed questions.  The second measure, an information score, ὍὩ 

(see Appendix C), assesses the same expertôs certainty in the point-estimates for the phenomenon of interest and is derived 

by averaging all of the expertôs individual, seed-item, information scores, ὍὩȟὭ (see Appendix C) (Cooke 1991).  The 

quality-level cutoff, ɚ, is determined numerically (Cooke 2008, 775-777) and defines a factor multiplied against each 

weight (i.e., ρ Ø π if Ø ɚ and ρ Ø ρ otherwise) that enables the removal of all data from those experts whose 

information does not meet minimum-quality thresholds (Cooke and Goossens, L L H J 2008, 657-674).  The global 

weight for the expert, Ὡ, is then 

ύ Ὡ ρ ϽὅὩϽὍὩȟ τȢσ 

(Cooke 1991).  For performance comparison, two additional types of aggregation weights typically accompany ύ Ὡ.  

Although the item weight for the expert, Ὡ, is like ύ Ὡ, it rests instead on the individual, seed-item scores or on 

ύ ὩȟὭ ρ ϽὅὩϽὍὩȟὭȟ τȢτ 

(Cooke 1991)Ȣ  Simple averaging generates the equal weight for the expert, Ὡ (out of Ὁ experts), or  
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ύ Ὡ
ρ

Ὁ
ȟ τȢυ 

(Cooke and Goossens, L L H J 2008, 657-674). 

In E4, the final stepðelicited data aggregation, the data-aggregation weights are computed and then used to 

combine the cleansed data of interest into one aggregate probability-distribution for each of the elicited quantities of 

interest.  Because the aggregate data then exists in probability distribution form, a final simulation step is taken to 

transform the data into point estimates39 for the elicited quantities of interest40. 

4.2.2 Bayesian analysis 

Bayesian analysis for a model generally performs the following nine steps (see Figure 4-3).  In AN1, ñAssume 

model form,ò the stochastic model form for ὪϽ, ὖὶɝȿ╓ , that includes some function, Ὂ◙ , where ◙ represents the 

set of model variables, is identified as the candidate for the analysis.  In AN2, ñAssume prior distributions for model-

variables,ò initial knowledge of the phenomenon is used to specify the joint, prior distribution for the variables in the 

model, “◙ , where “Ͻ generally denotes ὖὶϽ for functions of ◙.  In AN3, ñDetermine point estimates for all prior 

distribution hyper-parameters,ò point estimates are derived for hyper-parameters in the prior distributions, using a priori 

knowledge about the phenomenon (e.g., ╓ ◙  elicited from expert opinion that is a subset of ╓).  In AN4, ñDevelop 

modelôs generic joint likelihood function,ò the likelihood function is developed, fl◙ȿ╓ ὖὶ╓ȿ◙ , which is the 

Bayesian notational equivalent (changing from a function of ╓ to one of ◙) for the probability of the data given the model 

variables.  In AN5, ñDevelop modelôs generic joint posterior distribution,ò the likelihood function is combined with the 

prior distribution to construct the generic, joint, posterior distribution using Bayesô theorem 

                                                                            

39 The MATLAB ñPiecewiseLinearò distribution supports simulation of values from these expert distributions.  To use 

this function, the distribution point estimates require slight manipulation (i.e., adding of minute values) to ensure non-

zero values for each of the specified quantiles.  Also, see Appendix A.5. 

40 I chose this approach to facilitate easier model construction because some choices for prior distributions make model 

construction more difficult.  For example, if one were to use the linear regression model, the typical choice for a prior 

distribution would be MVN-Gammaðwhich yields the conjugate posterior that is also MVN-Gamma.  This symmetry 

obviously breaks when choosing alternate prior distributions with this model, such as the piecewise linear distribution 

that is generated directly from the CCM approach.  Furthermore, the piecewise linear distribution isnôt directly supported 

by the MCMC samplers used. 
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“◙ȿ╓
fl◙ȿ╓ Ͻ“◙

fl᷿◙ȿ╓ Ͻ“◙ ϽὨ◙
 τȢφ 

ᶿfl◙ȿ╓ Ͻ“◙ȟ τȢχ 

(Robert 2010)41.  In AN6, ñCustomize posterior to available data,ò the data (here, the prior subset of the data, ╓ ◙ , is 

excluded from ╓ as it is represented by “◙ ) is used to tailor (i.e., perform term expansion) the generic posterior.  AN7, 

ñGenerate point estimates for model variables,ò point estimates for ◙, denoted ◙, are realized either through analytical 

derivations or by generalizing samples from “  z(e.g., using either the prior-based mean, ◙ Ὁ“◙ , or the posterior-

based mean, ◙ Ὁ“◙ȿ╓  ).  In AN8, ñGenerate model predictions using estimated model variables,ò results are 

achieved by inserting ◙ into the stochastic model and then generating prior- or posterior-based predictions, or samples, 

from the stochastic model.  Finally, in AN9, ñValidate model predictions with data and compare performance with other 

models,ò prediction evaluation is undertaken to identify criteria, assess model prediction performance and validate model 

output using the criteria.  Furthermore, once additional information is available, sequential analysis becomes possible 

because the posterior results provide the prior distribution for a subsequent round of modeling using the newly arrived 

data. 

                                                                            

41 Where θ  means ñproportional to.ò 
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Figure 4-3:  Bayesian analysis steps AN1-AN10 

Another advantage to using the Bayesian approach for analysis is that results from multiple models may be 

combined to produce averaged model predictions42.  In AN10, ñGenerate averaged model predictionsò (see bottom of 

Figure 4-3), posterior-based predictions are generated by averaging the performance-weighted predictions from 

individual models.  Bayesian model averaging for this application generally uses 

0Òῳȿ╓ 0Òῳȿὓּדȟ╓ Ͻ0Òὓּדȿ╓

דּ

ȟ τȢψ 

to predict the averaged, posterior-based observables, ῳ, over models ּד ρȟςȟȣȟὑ, by performance-weighting the same 

from model ὓּד using ὖὶῳȿὓּדȟ╓  with its corresponding posterior model probability,  

ὖὶὓȿ╓
0Ò╓ȿὓ Ͻ0Òὓ

В 0Ò╓ȿὓ Ͻὖὶὓ
ȟ τȢω 

                                                                            

42 BMA has also been used for modeling software reliability (Sarishvili and Hanselmann 2013, 1-8); however, my 

application was developed independently. 
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(Hoeting et al. 1999, 382-417).  It is typically assumed that ὖὶὓ ͯ  (Fragoso, Bertoli, and Louzada 2017, n/a), and 

this results in ὖὶὓ ȿ╓
╓ȿ

В ╓ȿ
.  Thus, the posterior probability for each model given the data can be 

approximated as its normalized marginal likelihood.   

The marginal likelihood of the data given model ὓּד, 

ὖὶ╓ȿὓּד ᷿ fl◙ּדȿὓּדȟ╓ Ͻ“◙ּדȿὓּד ϽὨ◙ּדȟ◙
τȢρπ

where ◙ּד is the set of parameters for model ὓּד, may be estimated using the power-posterior approach (Friel and Pettitt 

2008, 589-607) (see Appendix F.1). 

Depending on the assumed form of ὖὶɝȿ╓  and the prior distribution “◙  for the model variables, the 

posterior distribution “◙ ╓ , or its full-conditional distributions “Ὸȿ◙Ȣ ȟ╓  for variables Ὦ ρȟςȟȣȟὐ (Gilks 1996, 

75-88), may not be analytically tractable; this is one of the main drawbacks to Bayesian analysis.  Fortunately, Markov 

chain Monte Carlo (MCMC) techniques (see Appendix E.4) provide a simulation-based alternative to analytical solutions.  

The key element of MCMC is the use of a specially constructed Markov chain that retains a stationary distribution 

equivalent to the desired posterior distribution (Robert and Casella 2004).  These methods generally provide samples 

from the full-conditional posterior distributions, which are proportional to their true distributions, and the subsequent 

sample moments provide point-estimates for their corresponding variablesô distributions. 

4.3- Data gathering 

The sources used for data-gathering are discussed in three parts:  Sub-section 4.3.1 describes the expert 

calibration; Sub-section 4.3.2 explains the elicitation of expert judgment in the baseline scenarios and describes the 

empirical data obtained from the NVD; and Sub-section 4.3.3 explains the approach used for eliciting multivariate data.   

4.3.1 Expert validation and calibration  

Expert validation is necessary for data cleansing of expert opinion data, and expert calibration supports data 

aggregation under the Cooke classical model.  This sub-section respectively outline the methodology details for validation 

and calibration.  

The qualitative assessment consists of a single questionnaire that queries formal education, relevant work 

experience, and a participant self-assessment.  Table 4-1 provides the questions supporting the assessment.  Each expertôs 
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experience level is assessed using the answers to validation questions VQ1-8.  The researcher determines if the 

participantôs response to VQ1-8 warrants their designation as an expert.  Those participants not attaining this designation 

or providing less than competent self-assessment scores in VQ9 will have their data removed from the dataset. 

Table 4-1:  Experience questions 

ID Question 

VQ1 
What formal higher education have you completed (include degree(s), with associated major and 
minor)? 

VQ2 
How many hours of professional training have you completed which is directly related to software 
security, software reverse engineering (RE), or vulnerability assessment? 

VQ3 
How many hours of professional training have you completed that is directly related to software 
security, software RE, or vulnerability assessment? 

VQ4 What processor architectures and assembly languages are within your technical expertise? 

VQ5 What higher-level software languages are within your technical expertise? 

VQ6 
How often do you currently perform software RE or vulnerability assessment on assembly 
language artifacts? (daily, several times in a week/month/year) 

VQ7 
How often do you currently perform software RE or vulnerability assessment on higher-level 
language artifacts (e.g., C or Java source, or decompiled code)? (daily, several times in a 
week/month/year) 

VQ8 
Of the Dreyfus model of skill acquisition categories, which ones describe personnel you have 
worked with (including yourself) in software RE or vulnerability assessment? (Novice, Advanced 
beginner, Competent, Proficient, Expert) 

VQ9 
Classify your own personal skills at software vulnerability analysis and RE, according to the 
Dreyfus model. (Novice, Advanced beginner, Competent, Proficient, Expert) 

The supporting material includes two network-based client-server model architecture applications, ñCarRaceò43 

and ñChatClientò44 (Ceccato et al. 2014, 1040-1074).  The first, ñCarRaceò (see Figure 4-4), is a simple game in which 

players compete by racing cars.  The JAVA language implements the client application that is obfuscated using opaque 

predicate methods; it consists of 14 classes and has 3.783 KLOC (thousands of lines of code) when decompiled (Ceccato 

et al. 2014, 1040-1074).  The second, ñChatClientò (see Figure 4-5), is a simple design providing the functionality for 

multiple users to have shared text based conversations.  The JAVA language also implements the client application; it 

consists of 13 classes and has two binary versions.  ñChatClientò is obfuscated using identifier-renaming methods (version 

contains 1.030 KLOC when decompiled) and separately using opaque predicates methods (version contains 3.642 

decompiled KLOC) (Ceccato et al. 2014, 1040-1074).   

                                                                            

43 Ceccato et al. developed ñCarRaceò for a case study presented in (Ceccato et al. 2007, 27-36).  

44 https://sourceforge.net/projects/jchat/ 

https://sourceforge.net/projects/jchat/
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Figure 4-4:  CarRace 

 

Figure 4-5:  ChatClient 

The practical assessment consists of two tasks (see Table 4-2) specific to the ñChatClientò application 

obfuscated using opaque predicates.  In the first task, experts perform RE to answer a question about the ñChatClientò 

applicationôs design.  The second task requires the additional steps necessary to demonstrate operation of a newly 

requested design feature.  All experts must answer correctly, and the practitioners record completion times.  An incorrect 

answer or a completion time greater than 60-minutes results in practical assessment disqualification for the participant 

and their data being removed from the dataset. 
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Table 4-2:  Practical assessment exercise questions 

ID Question 

T2 ñWhen a new user joins, the list of the displayed ñOnline usersò is updated. Identify the section of 
code that updates the list of users when a new user joins (report the class name/s and line number/s 
with respect to the source)ò (Ceccato et al. 2014, 1040-1074) 

T4 ñMessages are sent and displayed with the timestamp that marks when they have been sent. Modify 
the application such that the user sends messages with a constant timestamp = 3:00 PM.ò (Ceccato 
et al. 2014, 1040-1074) 

Assessment execution proceeds with the practitioner providing a computer to participants with the Eclipse 

JAVA development environment, decompiled source code for the client application, and the server binary preinstalled.  

As not all persons are familiar with every tool, the participants receive brief instructions explaining how to perform 

common tasks within the Eclipse JAVA development environment, such as starting the JAVA server, performing text 

searches, and traversing the client application in the debugger. 

The practitioner calibrates workshop participantsô project estimation skills for security assessments indirectly 

through measuring their ability to estimate RE task performance of others.  Recent research by Ceccato et al. (Ceccato et 

al. 2014, 1040-1074), investigating RE performance on the ñCarRaceò and ñChatClientò JAVA applications, provides 

information to generate 12 calibration questions.  Calibration activities45 require each participant to estimate the RE times 

for the tasks listed in Table 4-3. 

Table 4-3:  Calibration questions 

ID Question 

Actual time for 
correct 
responses (ⱶ) 

╝▫Ȣ╬▫►►▄╬◄■◐ ╬▫□▬■▄◄░▪▌

╝▫Ȣ▫█ ▬╪►◄░╬░▬╪▪◄▼
 

Car, 

T1, 
OP 

ñIn order to refuel the car has to enter the box. 
A red rectangle delimits the box area. What is 
the width of the box entrance (in pixels)?ò 
(Ceccato et al. 2014, 1040-1074) 

Min 2 
ρφ

ςρ
 Median 6.5 

Max 60 

Car, 
T4, 
OP 

ñThe fuel constantly decreases. Modify the 
application such that the fuel never 
decreases.ò (Ceccato et al. 2014, 1040-1074) 

Min 3 
ρσ

ρχ
 Median 8 

Max 28 

Chat, 

T1, IR 
ñMessages going from the client to the server 
use an integer as header to distinguish the 

Min 5 ρτ

ςω
 

Median 20 

                                                                            

45 Participants complete the calibration activities prior to the practical assessment activities and separate binaries 

(obfuscated using a different algorithm) form the basis of the calibration activities. 
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ID Question 

Actual time for 
correct 
responses (ⱶ) 

╝▫Ȣ╬▫►►▄╬◄■◐ ╬▫□▬■▄◄░▪▌

╝▫Ȣ▫█ ▬╪►◄░╬░▬╪▪◄▼
 

type of the message. What is the value of the 
header for an outgoing public message sent 
by the client?ò (Ceccato et al. 2014, 1040-
1074) 

Max 50 

Chat, 

T3, IR 

ñMessages are sent to a given room, if the 
user is registered in the room and if the 
message is typed in the corresponding tab. 
Modify the application such that all the 
messages from the user go to óRoom 1ô 
without the user entering the room.ò (Ceccato 
et al. 2014, 1040-1074) 

Min 4 

ω

ρω
 

Median 11 

Max 20 

Several necessary assumptions, that generalize the previous experiment, set up the question scenarios.  These 

scenarios describe experiments where computer science graduate students performed RE exercises on obfuscated 

decompiled source code.  Participants are instructed to assume all subjects in the experiment had:  academic JAVA 

programming experience, no applied RE experience, and a software security background limited to academic courses.  

Participants are also provided with the code used in the experiment (to assist in assessing the level of effort) and the ratio 

of students correctly completing the task out of the total number (to assist in skill estimation, see Table 4-3).   

The researcher then elicits correct activity completion time estimates for the fastest student, slowest student, 

and group average.  Participants respond using the CCMôs probability distribution point estimate format in Table 4-4.  

Table 4-5 and Table 4-6 contain the corresponding instructions and Figure 4-6 provides an illustrative example.   

Table 4-4:  Calibration question answer format 

Fastest individual time Median group time Slowest individual time 

 5%=___________  5%=___________  5%=___________ 

50%=___________ 50%=___________ 50%=___________ 

95%=___________ 95%=___________ 95%=___________ 

Table 4-5:  Expert instructions for the calibration exercises 

For those completing the exercise successfully, estimate the fastest individual time, slowest individual time, 
and median group time for each task.  Provide 5%, 50%, and 95% threshold estimations for each answer 
(in the probability distribution form explained below).  Ensure that your estimates account for al l possible 
time values.   
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Table 4-6:  Calibration answer format explanation 

Imagine that subjects perform 100 independent, but similar, analysis experiments.  Each of these 100 
experiments has values for the fastest, mean, and slowest times.  Grouping these values results in sets for 
the fastest, mean, and slowest times (with 100 values in each set). 

Separately for each set, assume subjects rank order values and then assign these times into one of the 
four bins above.  Then, bin1 contains the 5 fastest values, bin2 contains the lower middle 5%-50% values, 
bin3 contains the upper middle 50%-95% values, and bin4 contains the 5 slowest values.  Consequently, 
the 50% value (which divides bin2 and bin3) defines the mean threshold, the 5% value specifies the upper 
threshold of bin1, and the 95% value describes the lower threshold of bin4. 

t

Mi n
Low

5%
Medi an

Hi gh

5%
Max

bi n1 bi n2 bi n3 bi n4

0

 

Figure 4-6:  Calibration module answer format example 

4.3.2 Phase I (ñblack-boxò) 

Details for the Phase I data-gathering (see the grey E1-E4 and DG boxes in Figure 4-1, center) ï that supports 

a ñblack-boxò model for simulating cumulative discoveries in the baseline SR and SAP environment ï are now detailed 

in two parts.  The elicited data is explained by Sub-section 4.3.2.1, and Sub-section 4.3.2.2 describes the empirical data-

gathering from the National Vulnerability Database (NVD). 

4.3.2.1 Elicited data 

The overview of analysis preparation details for the baseline SR and SAPôs discovery model and the steps used 

to gather ╓  (i.e., E1-4 and DG), which contains the corresponding expected discoveries (dependent variable) over time 

(independent variable), given ● and ‎ (defined below), or Ὁὔὸȿ●ȟ‎ , is as follows.  In E1, scenarios are constructed 

that describe five, assumed baseline SR and SAP combinations for software comparable to web-browsers (i.e., ●ȟ‎, 

for which the specified total vulnerabilities present in each scenarioôs SR are assumed to be ‎ ρτψȟυυȟςπȟχȟσ 

respectively).  Table 4-8 and Table 4-9 contain the corresponding instructions and Figure 4-7 provides an illustrative 

example.  For E2, the elicitation sessions for expert calibration and baseline SR and SAP data are performed and the 

experts provide answers to the calibration questions using the probability distribution format in Table 4-7, and for 

Ὁὔὸȿ●ȟ‎  in the 10-calendar week time intervals defined by ὸּב ȟὸּב  for ּב ρȟςȟȣȟꞋ υ in each scenario.  In E3, 
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the researcher must specify CCM inputs that define the intrinsic range, Ὧ, and the calibration power, ”, 46.  Then, the 

baseline SR and SAP data are cleansed and the experts are calibrated using Cookeôs method with the CCM settings and 

the calibration data.  In E4, performance-based weights (computed using Cookeôs method (Cooke 1991)) are used to 

aggregate the baseline SR and SAP data from all the remaining experts into one dataset.  Then, data point estimates for 

Ὁὔὸȿ●ȟ‎  are generated (using the aggregated distributions) for each time interval defined by the baseline scenarios.  

For each interval, the researcher uses these point estimates with piecewise linear distributions to extract 50,000 samples 

from the aggregated elicited baseline SR and SAP data distributions. This provides five point estimates specifying 

Ὁὔὸȿ●ȟ‎  for each  ●ȟ‎ pair. 

Table 4-7:  Data elicitation answer format for a single SR and SAP, with example data entries 

Interval 
5% 

(least) 
Median 

95% 

(most) 

Ὁὔ ὸȿɾ ὔ ὸȿɾ  0 1 3 

Ὁὔ ὸȿɾ ὔ ὸȿɾ  1 3 5 

Ὁὔ ὸȿɾ ὔ ὸȿɾ  2 4 7 

Ὁὔ ὸȿɾ ὔ ὸȿɾ  2 4 3 

Ὁὔ ὸȿɾ ὔ ὸȿɾ  4 3 1 

Table 4-8:  Expert instructions for baseline SR and SAP elicitation 

Assume you have an academic software security team performing vulnerability assessment and reverse 
engineering in the baseline environment defined below.  Assume there are ɔ vulnerabilities present in the 
software release.  Assume the academic security team performing the work has one licensed copy of the 
software and states that additional product units may be purchased using ὼ  funds (without acquisition 
delay).  Assume that all software in the product is part of the release, to assume that it executes natively 
on the available equipment (Ø ), and to assume that each team staff member has individually licensed RE 
software along with a dedicated personal computer (PC).  Assume that all personnel and non-product 
material resources defined in the baseline SR&SAP are operationally available throughout the specified 
duration and that the product hardware failures are only dependent on the triggering of any specified anti-
tampering features (ὼ ).  Assume a random mixture of appropriate vulnerability types amongst the 

assumed faults present in each scenario (i.e., ‎).  Assume each discovery requires an additional three 
hours of static or dynamic analysis to verify the fault and one hour to document. 

What would be the discoveries in the following intervals: [0,10), [10, 20), [20, 30), [30, 40), [40, 50) weeks?  
Provide 5%, 50%, and 95% threshold estimations for each answer (in the probability distribution form 
explained below).  Ensure that your estimates account for all possible discoveries and that you follow the 
additional rules listed below. 

Response rules: 

(1) The cumulative sum of interval counts for each point estimate column (5%, 50%, and 95%) must be less 
than or equal to ɔ.   

                                                                            

46 This was determined manually through adjustment of the calibration power input until achieving maximal virtual DM 

performance (Cooke 2008, 775-777). 
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(2) The cumulative sum at each sequential interval for the 5%-point estimate column must be less than or 
equal to the 50%-point estimate column counterparts.  Likewise, the cumulative sum at each sequential 
interval for the 50%-point estimate column must be less than or equal to the 95%-point estimate column 
counterparts. 

Table 4-9:  Baseline elicitation module answer format explanation 

Imagine that subjects perform 100 independent, but similar, analysis experiments.  Each of these 100 
experiments has values for lowest, mean, and highest number of discoveries per interval.  Grouping these 
values results in sets for the lowest, mean, and highest number of discoveries per interval (with 100 values 
in each interval set). 

Separately for each set, assume subjects rank order values and then assign these counts into one of the 
four bins above.  Then bin1 contains the 5 lowest values, bin2 contains the lower middle 5%-50% values, 
bin3 contains the upper middle 50%-95% values, and bin4 contains the 5 highest values.  Consequently, 
the 50%-value (which divides bin2 and bin3) defines the mean threshold, the 5%-value specifies the upper 
threshold of bin1, and the 95%-value describes the lower threshold of the bin4. 

t
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5%

Medi an

Low 

5%

Mi n
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Figure 4-7:  Baseline elicitation module answer format example 

4.3.2.2 Empirical  data  

Bayesian analyses can also include empirical data-gathering (step DG) for estimation of the posterior 

distributions.  Unfortunately, public databases for historical vulnerability discoveries over time do not capture discovery 

times.  Consequently, the NVD reporting times for vulnerabilities found in four popular web-browsers, gathered by 

Nguyen, Massacci (2014, 1147-1162), were used as a proxy for discovery time47.  Additionally, most of the 46 variables 

                                                                            

47 The suitability of reporting time as a proxy for discovery time is discussed by Massacci and Nguyen (2014, 1147-

1162). 
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that define the SR and SAP combinations corresponding to the reporting times are not publicly available.  Therefore, it 

is assumed that the SR and SAP combinations for the five, selected, NVD dataset examples are similar to ●ȟ‎. 

Several interesting releases in the NVD dataset merited preparing their data for study.  The six examples chosen 

for analysis demonstration included releases 3.0 and 19.0 for Mozilla Firefox, 6.0 and 7.0 for Microsoft Internet Explorer, 

1.0 for Google Chrome, and 1.0 for Apple Safari (F. Massacci and V. H. Nguyen 2014, 1147-1162; National Institute of 

Standards and Technology 2018) (see Table 4-10).  In preparing ╓ from each of these examples, the discoveries for each 

release were grouped in 10-week intervals (identical to those defined in Section 3.7) over the first 50 weeks of each 

release.  These values were then altered such that their resulting ╓ represented the cumulative discoveries (dependent 

variable) over time (independent variable) at each interval. 

Table 4-10:  Empirical datasets for cumulative discoveries over time 

Product version Cumulative discoveries 

Safari 1.0 [0, 0, 0, 2, 2, 3] 

Internet Explorer 6.0 [0, 2, 4, 5, 6, 7] 

Internet Explorer 7.0 [0, 4, 6, 11, 15, 17] 

Chrome 1.0 [0, 4, 6, 16, 23, 30] 

Firefox 3.0 [0, 4, 12, 19, 40, 50] 

Firefox 19.0 [0, 20, 76, 93, 134, 134] 

(Massacci, Neuhaus, and Nguyen 2011, 195-208; Nguyen and Massacci 2012, 6-7; Nguyen and 

Massacci 2013, 493-498; F. Massacci and V. H. Nguyen 2014, 1147-1162; National Institute of 

Standards and Technology 2018) 

4.3.3 Phase II (ñclear-boxò) 

Details for the Phase II data-gathering that support a ñclear-boxò model for simulating cumulative discoveries 

in arbitrary SR and SAP environments are now presented. 

The blue E1-E4 boxes in Figure 4-1 (center) provide an overview of the steps used to gather ╓ ╓ϳ  (a ratio of 

two, distinct ּו ρ vectors of data defined below).  In E1, a set of Ὦ ρȟςȟȣȟּו υπ pairwise SR and SAP scenarios48, 

in which each pairwise element defines a ●ȟ●  pair (that associates with Ὀ Ὀ ), are constructed.  By construction, 

these scenarios are relative to the baseline SR and SAP, as well as each other; and across the set, the SR and SAP 

                                                                            

48 This idea was conceptualized while studying the elicitation approach that Szwed et al. (2006, 157-177) used to enable 

their proportional probabilities model analysis (Note: their approach stems from Bradley & Terry (Bradley and Terry 

1952, 324-345) and Pulkkinen (Pulkkinen 1994, 1-16)). 
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covariates are varied, and two approaches are used to avoid expert fatigue.  First, the study is restricted only to the subset 

of variables listed in Table 4-12, that I believe are the most influential to discovery events.  Second, the set of possible 

values for each of these variables is limited to five unique values per variable (also listed in Table 4-12).  In E2, these 

questions consisting of pairwise sets of SR and SAP scenarios are presented to each of the experts, who provide Ὀ Ὀ

Ὁὔ● Ὁὔ● , 49 or the expected discoveries (dependent variable) in ● (independent variable) over the expected 

discoveries (dependent variable) in ● (independent variable), for every ●ȟ●  at ὸ υπ weeks.  Table 4-11 provides 

an example question and the instructions are in Table 4-13 (Table G-1 and Table G-2 in Appendix G provide the complete 

set of ●ȟ● , for Ὦ ρȟςȟȣȟּו υπ).  E3-4 proceed similarly to what was already described in Phase I, to generate 

the performance-weighted aggregate ╓ ╓ϳ  dataset.  However, in this case, the data are already provided in point 

estimate form (i.e., not in probability distribution form as was the case for the responses to the baseline scenarios). 

Table 4-11:  An example question appearing in one of the scenario sets 

● ● Covariate Descriptions           ● Ὀ  Ὀ  

1000.00 10000.00    Total number of functions (ὼ )        100000.00   

10000.00 5000.00                     Product unit price (ὼ) 1000.00   

    3.00        --------    SA tool quality (ὼ )                 --------        

10.00 --------                SA personnel effort (ὼ ) --------        

3.00 --------    SA average personnel quality (ὼ )    --------        

4.00 3.00    Level of dynamic access (ὼ )         --------        

0.25 --------                % software reused (ὼ)    --------        

0.25 --------    % available design information (ὼ ) --------        

0.50 --------    % obfuscated software functions (ὼ ) --------        

0.50 --------      % cleansed software functions (ὼ ) --------        

Table 4-12:  Covariates of interest in ●ȟ●  and their values used 

ID Description Values (Baseline) 

ὼ  Total number of functions 50, 250, 1000, 10000, 
100000 

ὼ Product unit price (US $) 50, 500, 1000, 5000, 100000 

ὼ  Assessment tool quality 1, 2, 3, 4, 5 

ὼ  Assessment personnel effort (full-time equivalent, or FTE) 3, 5, 10, 20, 30 

ὼ  Assessment average personnel quality 1, 2, 3, 4, 5 

                                                                            

49 Recall from Equation τȢς that there is no dependence on ὸ or ●, when eliciting ╓ ╓ϳ . 
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ID Description Values (Baseline) 

ὼ  Level of dynamic access to artifacts 1, 2, 3, 4, 5 

ὼ Percent of functions reused from previous release (0-100%) 0, 10, 25, 50, 75 

ὼ  Percent of available design information 0, 15, 25, 50, 100 

ὼ  Percent of obfuscated software functions (0-100%) 0, 25, 50, 75, 100 

ὼ  Percent of cleansed software functions (0-100%) 0, 25, 50, 75, 100 

Table 4-13:  Pairwise comparison elicitation instructions 

Assume you have an academic software security team performing vulnerability assessment and reverse 

engineering in the defined pairs of environments.  Assume there are ‎ υυ vulnerabilities present in the 
software release.  What would be the discoveries in the interval [0, 50 weeks] for each environment?  

In applications, covariate inputs should be normalized to the baseline values and rescaled to their range of 

values in the questionnaire.  Thus, one has the following baseline normalization equation for each covariate Ὧ ρȟςȟȣȟὲ 

in ●,  

ὼǿ
ὼ ὼ

ÍÁØὢ ȟὢ ȟỄȟὢּו ÍÉÎὢ ȟὢ ȟỄȟὢּו
ȟ τȢρρ 

where the ~ accent denotes covariate baseline normalization, ὼ  is the kth covariate in the baseline environment, and ╧ 

is a ּו ὲ scenario matrix containing all defined SR and SAP combinations.  Then by construction, this results in the 

normalized, baseline covariate inputs being ● πȟπȟȣȟπ and elements in the Ὦth, arbitrary SR and SAP ● being 

constrained to the range ρȟρ. 

4.4 Bayesian analysis of VDM techniques 

Here, the Bayesian analysis paradigm transforms the Ὢὸȿ● , or Ὢὸ, and Ὢὸȟ●ȿ●  of each candidate VDM 

technique into a stochastic functional form, from which analysts assume that the data observations originate.  In other 

words, all the model functions, presented later in this section, modify a general form that represents the expected 

discoveries over time, or ὊὸȠ◙ , into some stochastic distribution or process, ὖὶɝȿὸȟ╓ , where ╓ is historical data over 

time from the phenomenon of interestȟ and ɝ are the future observables. 

This section has three parts: ñblack-boxò VDM techniques; ñclear-boxò VDM techniques; and MCMCBayes 

modeling software. 
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4.4.1 Phase I (ñblack-boxò) 

The ñblack-boxò VDM technique performs Bayesian model averaging using a non-parametric NHPP model50, 

five popular parametric forms of the NHPP, two common regression models, and two well-known growth-curve models.  

These models collectively support all the discovery rates illustrated in Figure 4-8.  The general form of the candidate 

baseline models is ὊὸȠȿὀ , or Ὂ ὸȠ .  For further distinction, Ὄ ὸȠⱣ can denote the same for the temporal 

parametric models, having the vector of parameters, Ᵽ, while Ὃ ὸȠῸὸ , with the temporal stochastic process Ὸὸ, can 

represent non-parametric models. 

For each model, Table 4-14 lists the mean-value function (MVF), its variables and their descriptions, the forms 

for their prior distributions, and descriptions of hyper-parameters (see Appendix I for the associated prior distribution 

hyper-parameter values). 

                                                                            

50 Where it is applicable, as the Kuo-Ghosh NHPP model requires datasets having non-zero grouped interval data. 
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Figure 4-8:  Discovery rates supported by the individual models 

The abbreviations are:  constant discovery rate (CFR), linearly increasing discovery rate (LIDR), 

linearly decreasing discovery rate (LDDR), exponentially increasing discovery rate (EIDR), 

exponentially decreasing discovery rate (EDDR), single pulse (SP), multiple pulse (MP) 

Table 4-14:  Vulnerability discovery models 

Model name 
(ὓּד) 

Mean-value function 

Variables Variable descriptions 

Prior distributions 
Hyper-parameter 
descriptions 

Kuo-Ghosh 
NHPP (ὓ ) 
(1997) 

Ὃ ὸȠῸὸ  

Ὸὸ τȢρς 
Ὸὸ בּיּ

בּ
 

 variable for expected - בּיּ
grouped discoveries in 
interval ּבּיּ ,ב π 
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Model name 
(ὓּד) 

Mean-value function 

Variables Variable descriptions 

Prior distributions 
Hyper-parameter 
descriptions 

“ɡὸ  ͯ

╖═╜╜═ɤᶻὸȟὧ, 51 

ɤᶻὸ - nondecreasing best 
guess set of point estimates 
over time for expected interval 
grouped discoveries, ɤᶻπ
π, ɤᶻὸ π π, ὸ π 

ὧ - confidence in best guess 

set, ὧ π 

Brooks-
Motley 
homogeneou
s Poisson 
process (ὓ ) 
(1980; 
Ozment 
2006, 25-36) 

Ὄ ὸȠⱣ  

‒ὸ τȢρσ 

Ᵽ ‒ 

‒ - expected maximum 
number of discoveries times a 
proportionality factor between 
expected discoveries and 
SAP performance, ‒ π 

“‒ Ὃͯὥάάὥὥȟὦ, 52 
ὥ - shape, ὥ π 

ὦ - rate, ὦ π 

Goel-
Okumoto 
NHPP (ὓ ) 
(Goel and 
Okumoto 
1979, 206-
211; 
Rescorla 
2005, 14-19) 

Ὄ ὸȠⱣ  

όρ Ὡ τȢρτ 

Ᵽ όȟ‒ 

ό - expected maximum 

number of discoveries, ό π 

‒ - proportionality factor 

between ό and SAP 

performance, ‒ π 

“ό Ὃͯὥάάὥὥȟὦ 

“‒ ὋͯὥάάὥὧȟὨ 

ὥȟὧ - shape, ὥ π, ὧ π  

ὦȟὨ - rate, ὦ π, Ὠ π 

Goelôs 
generalized 
Goel-
Okumoto 
NHPP (ὓ ) 
(1985, 1411-
1423; 
Okamura, 
Tokuzane, 
and Dohi 
2013, 15-23) 

Ὄ ὸȠⱣ  

όρ Ὡ τȢρυ 

Ᵽ όȟ‒ȟ‖ 

ό - expected maximum 

number of discoveries, ό π 

‒ - proportionality factor 

between ό and SAP 

performance, ‒ π 

‖ - power factor that scales 

the effect of ‒, ‖ π 

“ό Ὃͯὥάάὥὥȟὦ 

“‒ ὋͯὥάάὥὧȟὨ 

“‖ ὋͯὥάάὥὫȟὬ 

ὥȟὧȟὫ - shape, ὥ π, ὧ π, 
Ὣ π 

ὦȟὨȟὬ - rate, ὦ π, Ὠ π, 
Ὤ π 

                                                                            

51 ╖═╜╜═ɤᶻὸȟὧ represents the Gamma process (see Appendix B.3);  ͯmeans ñdistributed according to.ò 

52 Ὃὥάάὥὥȟὦ represents the Gamma distribution (see Appendix A.2). 
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Model name 
(ὓּד) 

Mean-value function 

Variables Variable descriptions 

Prior distributions 
Hyper-parameter 
descriptions 

Musa-
Okumoto 
NHPP53 (ὓ ) 
(1984, 230-
238; Ozment 
2006, 25-36) 

Ὄ †ȠⱣ  

ρ

‖
ϽÌÎρ ‒‖† τȢρφ 

Ᵽ ‒ȟ‖ 

‒ - expected maximum 
number of discoveries times a 
proportionality factor between 
expected discoveries and 
initial SAP performance, ‒
π 

‖ - SAP performance 
degradation rate of reduction 
per discovery, ‖ π 

“‒ Ὃͯὥάάὥὥȟὦ 

“‖ ὋͯὥάάὥὧȟὨ 

ὥȟὧ - shape, ὥ π, ὧ π   

ὦȟὨ - rate, ὦ π, Ὠ π 

Yamadaôs s-
shaped 
NHPP (ὓ ) 
(1983, 475-
484; 
Okamura, 
Tokuzane, 
and Dohi 
2013, 15-23) 

Ὄ ὸȠⱣ  

όρ ρ ‒ὸὩ τȢρχ 

Ᵽ όȟ‒ 

ό - expected maximum 

number of discoveries, ό π 

‒ - steady state SAP 

performance, ‒ π 

“ό Ὃͯὥάάὥὥȟὦ 

“‒ ὋͯὥάάὥὧȟὨ 

ὥȟὧ - shape, ὥ π, ὧ π    

ὦȟὨ - rate, ὦ π, Ὠ π 

Linear 
regression 
for a single 
independent 
variable (ὓ ) 
(DeGroot 
2005; 
Alhazmi, 
Malaiya, and 
Ray 2007, 
219-228) 

Ὄ ὸȠⱣ  

‍ ‍ὸ τȢρψ 

Ᵽ ‍ȟ‍ , 

ὶ 

‍ - discoveries at ὸ π, 
Њ ‍ Њ 

‍ - SAP performance rate, 

Њ ‍ Њ 

ὶ - precision for zero mean 

error term, ‭, ὶ π 

“‍ ὔͯέὶάὥὰὥȟὦȟ54 

“‍ ὔͯέὶάὥὰὧȟὨ 

“ὶ ὋͯὥάάὥὫȟὬ 

ὥȟὧ - mean, Њ ὥ Њ, 

Њ ὧ Њ   

ὦȟὨ - precision, ὦ π, Ὠ π 

Ὣ - shape, Ὣ π 

Ὤ - rate, Ὤ π 

Ὄ ὸȠⱣ  

‍ ‍ὸ ‍ὸ τȢρω 

Ᵽ ‍ȟ‍ȟ‍ , 

ὶ 

‍ - discoveries at ὸ π, 
Њ ‍ Њ 

‍ - SAP performance rate, 

Њ ‍ Њ 

‍ - SAP performance rate 

second degree factor, Њ
‍ Њ 

ὶ - precision for zero mean 

error term, ‭, ὶ π 

                                                                            

53 For the Musa-Okumoto NHPP, security assessment time, † (i.e., SA hours), is used in lieu of calendar time. 

54 ὔέὶάὥὰὥȟὦ represents the Normal distribution (see Appendix A.3). 
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Model name 
(ὓּד) 

Mean-value function 

Variables Variable descriptions 

Prior distributions 
Hyper-parameter 
descriptions 

Polynomial 
degree-2 
regression 
for a single 
independent 
variable (ὓ ) 
(DeGroot 
2005; 
Rescorla 
2005, 14-19) 

“‍ ὔͯέὶάὥὰὥȟὦ 

“‍ ὔͯέὶάὥὰὧȟὨ 

“‍ ὔͯέὶάὥὰὫȟὬ 

“ὶ Ὃͯὥάάὥὴȟή 

ὥȟὧȟὫ - mean, Њ ὥ Њ, 

Њ ὧ Њ, Њ Ὣ Њ 

ὦȟὨȟὬ - precision, ὦ π, Ὠ
π, Ὤ π 

ὴ - shape, ὴ π 

ή - rate, ή π 

Logistic 
(Verhulst) 
growth55 (ὓ ) 
(Yamada, 
Ohba, and 
Osaki 1983, 
475-484; 
Alhazmi and 
Malaiya 
2008, 14-22; 
Winsor 1932, 
1-8) 

Ὄ ὸȠⱣ  

‍

ρ Ὡ Ͻ
τȢςπ 

Ᵽ ‍ȟ‍ȟ‍ , 

ὶ 

‍ - growth rate parameter 
that supports determining the 

point of inflection ὸ , ὔ

, ‍ π 

‍ - carrying capacity 
(maximum population size, or 
discoveries), ‍ π  

‍ - population growth rate 
(i.e., SAP performance rate) 
that supports determining the 
point of inflection (see the 
description of ‍ above), ‍
π  

ὶ - precision for zero mean 

error term, ‭, ὶ π 

“‍  ͯ

ὔέὶάὥὰὥȟὦϽὝπȟȟ56 

“‍  ͯ

ὔέὶάὥὰὧȟὨϽὝπȟ 

“‍  ͯ

ὔέὶάὥὰὫȟὬϽὝπȟ 

“ὶ Ὃͯὥάάὥὴȟή 

ὥȟὧȟὫ - mean, Њ ὥ Њ, 

Њ ὧ Њ, Њ Ὣ Њ 

ὦȟὨȟὬ - precision, ὦ π, Ὠ
π, Ὤ π 

ὴ - shape, ὴ π 

ή - rate, ή π 

                                                                            

55 Logistic growth is symmetrical about the inflection point. 

56 Ὕπȟ denotes ñtruncation below zero.ò 
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Model name 
(ὓּד) 

Mean-value function 

Variables Variable descriptions 

Prior distributions 
Hyper-parameter 
descriptions 

Gompertz 
growth57 
(ὓ ) 
(Yamada, 
Ohba, and 
Osaki 1983, 
475-484; 
Okamura, 
Tokuzane, 
and Dohi 
2013, 15-23; 
Winsor 1932, 
1-8) 

Ὄ ὸȠⱣ  

‍ϽὩ
Ͻ

τȢςρ 

Ᵽ ‍ȟ‍ȟ‍ , 

ὶ 

‍ - growth rate parameter 
that supports determining the 

point of inflection ὸ , ὔ

, ‍ π 

‍ - carrying capacity 
(maximum population size, or 
discoveries), ‍ π  

‍ - retardation growth rate 
parameter that slows the 
approach to ‍ and supports 
determining the point of 
inflection (see the description 
of ‍ above), ‍ π  

ὶ - precision for zero mean 

error term, ‭, ὶ π 

“‍  ͯ

ὔέὶάὥὰὥȟὦϽὝπȟ 

“‍  ͯ

ὔέὶάὥὰὧȟὨϽὝπȟ 

“‍  ͯ

ὔέὶάὥὰὫȟὬϽὝπȟ 

“ὶ Ὃͯὥάάὥὴȟή 

ὥȟὧȟὫ - mean, Њ ὥ Њ, 

Њ ὧ Њ, Њ Ὣ Њ 

ὦȟὨȟὬ - precision, ὦ π, Ὠ
π, Ὤ π 

ὴ - shape, ὴ π 

ή - rate, ή π 

Bayesian analysis details for the individual NHPP models are as follows.  Let ὔὸ denote the number of 

cumulative discoveries at time ὸ.  This analysis of the discrete, counting-process form of the NHPP58 requires grouped 

interval counts for the discovery data, ὔπ π and ὔὸּב ὔὸּב ὲּב ὲּב  for ּב ρȟȣȟꞋ intervals, or ╓

ὔὸ πȟὔὸּב ὲּבȠ ּב ρȡꞋȟὮ ρȡ
הּ

Ꞌ
 (where the number of datapoints, ּה, is a multiple of Ꞌ ρ).  Assuming 

that ╓ originates from a NHPP having MVF Ὂ ὸȠ◙  (e.g., see ὓ -ὓ  in Table 4-14), the likelihood of ◙ given ╓, that 

stems from the NHPPôs probability mass function (pmf) (Cinlar 1975), is  

fl◙ȿ╓
Б Б Ὂ ὸּבȠ◙ Ὂ ὸּב Ƞ◙

בּ הּבּ
ꞋꞋ

בּ

Б Б ὲּב ὲּב Ȧ
הּ
ꞋꞋ

בּ

Ὡ
В В ◙Ƞבּ בּ Ƞ◙

הּ
ꞋꞋ

בּ Ȣ τȢςς 

                                                                            

57 Gompertz growth is asymmetrical about the inflection point. 

58 The continuous, arrival-time form of the NHPP can also be used to model discovery events. 
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Then, the posterior-distribution equation, 

“◙ȿ╓ ᶿ
Б Б Ὂ ὸּבȠ◙ Ὂ ὸּב Ƞ◙

בּ הּבּ
ꞋꞋ

בּ

Б Б ὲּב ὲּב Ȧ
הּ
ꞋꞋ

בּ

Ὡ
В В ◙Ƞבּ בּ Ƞ◙

הּ
ꞋꞋ

בּ Ͻ“◙ȟ τȢςσ 

results from using Equation τȢχ to combine the assumed form of the prior distribution, “◙ , with Equation τȢςς.  

Simulation of future observables, ὖὶῳȿὸȟ╓ , proceeds by generating samples from a NHPP having MVF Ὂ ὸȠ◙  and 

using the MCMC derived ◙ Ὁ“◙ȿ╓  within. 

Bayesian analysis details for the individual regression and growth-curve models are as follows.  Let ὲ denote 

the cumulative discoveries at the respective time instance ὸ, for Ὦ ρ to ּה data points.  These models alternately assume 

that the Ὦth observation, Ὀ, for each of Ὦ ρ to ּה, originates from the random variable ὣ Ὄ ὸȠⱣ ‭, that includes 

an independent and identically distributed (i.i.d.) zero-mean error term from a Normal distribution, 

‭

הּ

ὭͯȢὭȢὨȢὔέὶάὥὰπȟὶ ȟ τȢςτ 

with unknown precision ὶ (Hoff 2009).  To condense, this essentially assumes that ╓ stems from the Normal distribution  

ὔέὶάὥὰὌ ὸȠⱣȟὶ ȟ τȢςυ 

having MVF Ὄ ὸȠⱣ (e.g., see ὓ -ὓ  Table 4-14) and precision ὶ.  Consequently, the likelihood of parameters Ᵽȟὶ 

given ╓ is 

flⱣȟὶȿ╓
ὶ

ς“

הּ

Ὡ
В ȟⱣּה

τȢςφ 

The corresponding posterior-distribution equation, 

“Ᵽȟὶȿ╓ ᶿ
ὶ

ς“

הּ

Ὡ
В ȟⱣּה

Ͻ“Ᵽ Ͻ“ὶȟ τȢςχ 

results from using Equation τȢχ to combine the assumed forms of the prior distributions, “Ᵽ and “ὶ, with Equation 

τȢςφ.  Generation of future observables, ὖὶ◕ȿὸȟ╓ , proceeds by sampling from Equation τȢςυ and using the MCMC 

derived Ᵽ Ὁ“Ᵽȿ╓ȟὶ  and ὶǶ Ὁ“ὶȿ╓ȟⱣ  within. 
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An overview of the BMA model, that combines all ὓּד, for ּד ρȟỄȟὑ ρπ, models in Table 4-14, for the 

baseline SR and SAP and an outline of its Bayesian analysis steps AN1-7 is as follows.  Here I denote the stochastic form 

for these diverse models generally using ὖὶɝȿὓּדȟὸȟ╓ , that is explained as the probability of the observables, or 

cumulative discoveries in the baseline over time, ɝ, given model ὓּד, ὸ, and ╓ .  The Markov-chain Monte Carlo 

(MCMC) based Bayesian analysis approach for AN1-7 uses ╓  with each individual model and follows the averaged 

approach for estimating ὖὶῳȿὸȟ╓  outlined in Section 4.2.2.   

Model choice is then performed as follows.  First, the best individual model is determined using Bayes factors,  

ὄὊ
ὖὶ╓ȿὌ

ὖὶ╓ȿὌ
ȟ τȢςψ 

where Ὄ  is the null hypothesis model, and where Ὄ  is the alternate hypothesis model (Jeffreys 1961; Kass and Raftery 

1995, 773-795).  Interpretation of the BF score follows the guidance provided by Kass and Raftery (1995, 773-795):  

BF=1-3.2, ñnot worth more than a bare mentionò; BF=3.2-10, ñpositiveò; BF=10-100, ñstrongò; and BF>100, ñvery 

strong.ò  Then, the BMA performance is evaluated against predictions from the best individual model using mean-square 

forecasting error (MSFE) (Clements and Hendry 1993, 617-637).  For the ּה ρ original data vector ╓, and Ὕ  הּ

observables matrix ɝ (generated for Ὕ parameter samples at every data point), it is generally described as the average of 

the sum of squares of prediction error, as measured using the observables against the original data, or 

ὓὛὊὉ
ρ

Ὕ
Ὀ ɝЉ

הּ

Љ
Ȣ τȢςω 

Models having lower MSFE errors are interpreted as performing better. 

4.4.2 Phase II (ñclear-boxò) 

The structure of Equation τȢρ supports a two-phased approach to Bayesian analysis of the ñclear-boxò 

discovery model Ὢὸȟ●ȿ● , that analyzes the first term in τȢρ, Ὢὸ, separately from the second term, ί● .  This 

section presents two models for ί● , details Bayesian analysis of ί● , and then outlines how to use these analysis 

results with those from Ὢὸ (recall Sub-section 4.4.1). 

This research introduces two parametric forms of the scaling term ί●  in Equation τȢρ and these are 

represented using the general form, Ὓ●Ƞ╬.  Respectively, they each provide linear and exponential modulation of the 
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baseline model and both forms use a τφ ρ regression parameter vector  to relate the influence of each entry in ● to 

the scaling term. The linear form scales the baseline MVF using  

Ὓ●Ƞ╬ ρ ●ȟ τȢσπ 

and the exponential form59 (Cox 1972, 55-66) alternately modulates by using  

Ὓ●Ƞ╬ Ὡ ● τȢσρ 

Performing the AN1-7 Bayesian analysis steps with either form above by means of MCMC is straightforward, 

uses the dataset ╓ ╓ϳ , and assumes the expert responses follow Gaussian distributions (as in Szwed et al. (2006, 157-

177)).  For the linear form, I use Equation τȢσπ, let ώ ὈȾὈ  denote the data for Ὦ ρȟςȟȣȟּו υπ, and assume 

that the expertôs response to the Ὦth scenario pair, ●ȟ● , is uncertain.  Thus, I define the random variable (r.v.), 

ὣ
ρ ●

ρ ●
‭ȟ τȢσς 

having the independent and identically distributed (i.i.d.) zero-mean error term from a Normal distribution, 

‭

וּ 

ὭͯȢὭȢὨȢὔέὶάὥὰπȟὶ ȟ τȢσσ 

For the exponential form, I similarly use Equation τȢσρ, alternately let ᾀ ÌÎώ , and define the r.v., 

ὤ Ͻ● ● ‭Ȣ τȢστ 

In both instances, I define flat priors on the elements in the model parameter vector , and a truncated flat prior (such that 

ὶ π on ὶ, which is the precision for the zero-mean error term. 

For AN8, forecasting of discoveries for arbitrary SR and SAP scenarios proceeds from using future observables 

from the baseline BMA modelôs ɝ (also see Sub-section 4.4.1) and the scaling modelôs ɝ (described next).  That is, I 

                                                                            

59 Note:  modulating the NHPP baseline models using Equation τȢσρ results in the well-known modulated Poisson 

process model . 
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combine them using Equation τȢρ and can then generate future observables from the Ὥth SR and SAP, ɝ, using the 

resulting product distribution60, 

ὖὶῳȿὸȟ●ȟ╓ȟ╓ ╓ϳ ὖὶῳȿὸȟ╓ Ͻὖὶῳȿ●ȟ╓ ╓ϳ Ȣ τȢσυ 

So, to generate a sample from Equation τȢσυ, I separately obtain individual samples from the baseline and scaling 

functions61 and then calculate their product.  I can generate future scaling term observables, ɝ, from  

ὖὶῳȿ●ȟ╓ ╓ϳ ὔͯέὶάὥὰὛ●Ƞ╬ȟὶ τȢσφ

by setting its MVF, Ὓ●Ƞ╬, to either Equation τȢσπ or τȢσρ (respectively, the one corresponding to the sampling 

approach used for “╬ȟὶȿ╓ ╓ϳ ) and using ●, ╬, and ὶǶ within. 

Steps AN9-10 for the ñclear-boxò model proceed as follows.  For AN9, the BMA alternative constructed for 

Ὢὸ is inherently the best model and selection of the ideal scaling function, Ὓ●Ƞ╬, is performed using MSFE.  For 

completeness, I mention that step AN10 does not apply to analysis of Ὢὸȟ●ȿ●  here.   

4.5 MCMCBayes modeling software 

Per modeling instance, the power-posterior approach approximates the integral on the right side of (4) using 

ideas from path sampling (Gelman and Meng 1998, 163-185) that increase the necessary MCMC sequences from one to 

ὲ  (having typical values between ςπ ρππ); each requires unique initialization, execution, and post-processing. 

To reduce the manual effort involved in performing the power-posterior approach within sampling sequence 

analyses for multiple models, the MCMCBayes62 framework was developed to automate MCMC sampling, model 

prediction, and model validation sequences63.  MCMCBayes is a readily extensible, open-source, object-oriented, 

                                                                            

60 The expected value for a product distribution of the independent r.v.s ὼ and ώ is ὉὼϽώ ὉØϽὉÙ (Bohrnstedt 

and Goldberger 1969, 1439-1442). 

61 Using either the inverse transform method (see Appendix E.1) or standard sampling techniques (e.g., samples from 

ὔέὶάὥὰ r.v.s, see Appendix A.3). 

62 https://gitlab.com/reubenajohnston/MCMCBayes 

63 See Appendix E for general descriptions of relevant simulation techniques used by MCMCBayes and its 

dependencies. 

 

https://gitlab.com/reubenajohnston/mcmcBayes
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software library that supports MCMC-based Bayesian analysis using MATLAB64, with OpenBUGS65 (Lunn et al. 2000, 

325-337; Lunn et al. 2009, 3049-3067), JAGS66 (Plummer 2003, 125), or Stan67 (Carpenter et al. 2017). 

In addition to the data for the phenomenon, MCMCBayes requires several forms of input for performing 

Bayesian analyses.  One must supply general input values for controlling MCMC sampling, MCMC diagnostics, and 

summary statistics generation.   

MCMCBayes provides output estimates for prior distributions, posterior distributions, and MCMC 

convergence diagnostics68.  The distribution estimates include graphical histograms and numerical summary statistics 

such as the sampling mean, standard deviation, minimums, maximums, and highest posterior density (HPD) intervals.  

MCMC convergence diagnostic outputs include graphical output results for trace (i.e., raw sample), ergodic mean, and 

auto-correlation function (ACF) plots, as well as the Monte Carlo error (MCE) estimates (see Appendix E.4.4).   

MCMCBayes forecasts using either the averaged or individual models and evaluates their prediction 

performance using BF, mean-square forecasting error (MSFE)69, and visually.  Bayes factors use the marginal likelihood 

values that are approximated here using the power-posteriorôs serial MCMC approach (see Appendix F.1) outlined by 

(Friel and Pettitt 2008, 589-607; Friel, Hurn, and Wyse 2014, 709-723), with ὲ σπ discretization steps and a 

temperature parameter ὧ υ.  In addition to BF and MSFE, MCMCBayes supports visual evaluation of individual and 

averaged models by plotting their predictions alongside the original data. 

MCMCBayes implements the AN1-AN9 steps in the Bayesian analysis sequence for each of the individual 

models and then AN10 for the averaged model.  Most step instances are well-described by their general descriptions.  

However, AN3, ñDetermine point estimates for all prior distribution hyper-parameters,ò merits additional details 

concerning its tailored implementation.       

                                                                            

64 http://www.mathworks.com 

65 http://www.openbugs.net  

66 http://mcmc-jags.sourceforge.net  

67 http://mc-stan.org/  

68 In general, practitioners cannot validate achievement of convergence; however, in some cases, MCMC diagnostics (see 

Appendix E.4.4) imply non-convergence (Hoff 2009). 

69 For convenience, MCMCBayes computes MSFE using point-estimates for the modelôs posterior distributions (i.e., not 

using raw samples from model distributions). 

http://www.mathworks.com/
http://www.openbugs.net/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
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To support construction of informative Bayesian priors for each of the models, AN3 is augmented.  First, best 

judgment by the researcher should be used to specify one of the hyper-parameters in each prior distribution.  Next, these 

would be provided to MCMCBayes, and for each ●ȟ‎ scenario, it then uses maximum likelihood estimation (MLE, 

see Appendix D.1) or least squares (LS, see Appendix D.2) techniques for model fitment, using the derived ╓ ◙  to 

generate a set of point estimates for each model variable.  Then, because the chosen prior distribution for each model 

variable has known equations for its mean, MCMCBayes algebraically solves for the hyper-parameter corresponding 

with the specified one by assuming that the expected value for each variable is the resulting estimate from its MLE- or 

LS-model fitment. 
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Chapter 5.  Results and discussion 

 

In this chapter, outcomes are described and reviewed in four parts: Section 5.1 discusses the data cleansing; 

Section 5.2 highlights calibration results from using Cookeôs method; Section 5.3 highlights the results from the ñblack-

boxò model data elicitation and aggregation, and analysis that includes baseline forecasting demonstrations from both 

individual and averaged models; and Section 5.4 highlights the results from the ñclear-boxò model data elicitation and 

aggregation, and analysis that includes several scaled forecasting demonstrations for arbitrary SR and SAP combinations. 

5.1 Cleansing 

In the expert judgment workshops, I gathered necessary data to support expert validation and afterwards 

performed data cleansing.  The resulting data included self-assessment questionnaire responses and practical assessment 

results.  Three persons self-assessed their skill level below the designated threshold (i.e., less than Dreyfus skill level 3, 

ñCompetentò).  Additionally, the six persons who self-assessed as either ñCompetentò or ñProficientò successfully 

completed the practical assessment and listed satisfactory levels of training and experience.  Therefore, removal of the 

information provided by the former three persons cleansed the elicited data set.  See Table 5-1 and Table 5-2 respectively 

for resulting individual experience and practical assessment data. 

Table 5-1:  Expert experience 

Expert # Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

1 
B.S. C.S., Math 
minor 

12 36 
ARM, x86, 
AVR, PIC 

C, C++ Month Week 

Yes 
Yes 
Yes 
No 
No 

Competent 

2 
B.S. C.S., E.E. 
minor 

10 24 x86, ARM 
C, C++, 
JAVA 

Month Month 

Yes 
Yes 
Yes 
Yes 
Yes 

Proficient 

REuben 

B.S. E.E., B.S. 
C.S., M.S. S.E., 
PhD. S.E. (in 
progress) 

80 36 

x86, ARM, 
Motorola 
HC12, 
SPARC, 
PIC, AVR, 
PowerPC 

Ada,C, C++, 
JAVA, C#, 
Visual Basic, 
Python 

Week Week 

Yes 
Yes 
Yes 
Yes 
Yes 

Proficient 
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Expert # Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

5 
B.S. Comp.E., 
PhD. C.S. (in 
progress) 

20 6 

x86, 
PowerPC, 
SPARC, 
Alpha, 
MIPS, 
Motorola 
HC11, 
ARM 

C, C++, 
Python, 
JAVA, 
OCAML 

Year Week 

Yes 
Yes 
Yes 
Yes 
Yes 

Competent 

6 
B.A. C.S., Math 
minor, M.S. C.S. 

10 36 

ARM, x86, 
MSP 430, 
Motorola 
6805 

C, Python, 
Shell code 

Week Month 

No 
No 
Yes 
Yes 
Yes 

Proficient 

7 

B.S. Comp & 
Network Sec, 
C.S. minor, M.S. 
Info. Assur. 

40 20 x86 
C, C++, 
Python, 
.NET, JAVA 

Every 2 
months 

2-3 Week 

Yes 
Yes 
Yes 
Yes 
Yes 

Competent 

Table 5-2:  Practical assessment results 

Expert Q1 
(correct) 

Q1 (time) Q2 
(correct) 

Q2 

(time) 

1 Yes 12min Yes 5min,25sec 

2 Close 
enough70 

15min Yes 3min,24sec 

REuben Yes 21min Yes 7min 

5 Yes 13min Yes 19min 

6 Yes 50min Yes 19min 

7 Yes 27min Yes 8min 

5.2 Calibration  

The outcomes from using Cookeôs method are now discussed. 

With the expert-provided, seed-question response data as input, a spreadsheet tool and Excalibur71 were used 

to perform the expert calibration computations.  For each of the experts, Ὡ ρȟςȟȣȟὉ, the spreadsheet tool preprocessed 

the information (e.g., estimated the individual, expert, distribution extremes), and Excalibur derived their calibration and 

information scores (i.e., ὅὩ and ὍὩ) as well as their performance-based and equal aggregation weights (i.e., ύ Ὡ, 

and ύ Ὡ).   

                                                                            

70 Fortunately, approximate results are acceptable when tossing horseshoes, throwing hand grenades (i.e., in the game 

ñGoldenEye 007ò), and performing reverse engineering. 

71 http://www.lighttwist.net/wp/excalibur 

http://www.lighttwist.net/wp/excalibur
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It is common practice to compare the performance of the CCM virtual decision-maker (Ὀὓ) across the 

alternatives of global weight (Ὀὓ), item weight (ὍὈὓ), and equal weight (Ὀὓ ) (Cooke and Goossens, L L H J 2008, 

657-674).  For this dataset, analysis identified the preferences as global, item, and equal weight DMs; all three DMs 

outperformed the calibration score of the best expert (not a good outcome).  For each expert, Table 5-3 lists the numbers 

of seed questions assessed out of the total, calibration scores, information scores, performance weights, and equal weights. 

Table 5-3:  Expert scores ranked using Cookeôs method 

Id 

Seeds 
assessed  

out of ה 

ὅὩ ὍὩ 
ύ Ὡ, 
no DM 

ύ Ὡ, 

no DM 

Ὀὓ  8/12 0.2472 1.001 -- -- 

ὍὈὓ 8/12 0.1105 1.012 -- -- 

Ὀὓ  8/12 0.2472 0.3883 -- -- 

Expert 4     5/12 0.05281 1.283 0.7563 0.1667 

Expert 6 4/12 0.01264 1.594 0.225 0.1667 

Expert 2    2/12 0.0009623 1.74 0.01868 0.1667 

Expert 3     1/12 0.0005433 2.053 0 0.1667 

Expert 5  3/12 0.0005842 1.029 0 0.1667 

Expert 1       2/12 0.0000397 1.028 0 0.1667 

Expert performance from the calibration exercise, as measured by the CCM, was as follows.  Only Experts 4, 

6, and 2 received non-zero, performance-based weights72, each having the respective normalized values of χυȢφϷ, 

ςςȢυϷ, and ρȢωϷ.  The corresponding, and very low, significance level threshold, ɚ πȢπππωφςσ, was for Expert 2.  

Experts 3 and 5 received calibration scores in the same order of magnitude as 2.  The score for Expert 1 was ρπ  lower 

in range. 

Two significant factors contributed to the very low calibration scores.  The first was lack of a CCM-approach 

training sessionðthus this type of instruction is strongly recommended for future studies.  The second factor involved 

the data used to create the calibration questions.  Participants should have been calibrated based on their ability to assess 

software security performance.  As no quantitative data were available for generating directly relevant seed questions, it 

was necessary to use a proxy dataset.  Unfortunately, even this proxy had several limitations.  The trivial RE problems 

                                                                            

72 It is common for the CCM to assign ύ Ὡ π to many experts (Ryan et al. 2012, 774-784). 
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performed in this experiment were significantly reduced in complexity from the RE necessary for performing product 

security assessments; in addition, some of the relevant variables were not available (e.g., student RE skill levels). 

5.3 Phase I (ñblack-boxò) 

In this section, outcomes from the Phase I analysis are described and reviewed in two parts: Sub-section 5.3.1 

discusses highlights of the elicitation and data aggregation; and Sub-section 5.3.2 highlights the results from the ñblack-

boxò analysis and includes forecasting demonstrations for several baseline SR and SAP examples. 

5.3.1 Elicitation and data aggregation 

Results from the ╓  portions of elicitation and aggregation were as follows.   

I executed data-gathering via a series of expert-judgment workshops.  Four persons participated in the pilot 

(including myself) and five persons completed the main elicitation sessions.  Several methodology adjustments were 

necessary during execution of the workshop.  For example, during the pilot session, I modified some of the baseline 

variable values and, at the participantsô request, translated values for variables described using the ὼ  metric (total 

number of functions) to approximate lines of code. Following the main workshop, I augmented the list of variables.  This 

included refinement of the variables describing development languages, refinement of the variables describing available 

design information, insertion of an anti-tampering variable, and addition of variables defining the complexity due to 

virtualization and parallel processing.  Consequently, in a follow-up elicitation session, participants adjusted their 

probability distributions per their beliefs on the updated baseline scenarios. 

Figure 5-1 shows a sample response set using colored rectangles that represent the bins73 for the probability 

distribution in each 10-week interval (where each is specified by a ή Ϸ, ή Ϸ, ή Ϸ, ή Ϸ, and ή Ϸ set of thresholds that 

define a piecewise-linear probability distribution, see Appendix A.5) for cumulative discoveries in the ●ȟ‎ ρτψ 

scenario.   

                                                                            

73 I.e., bin1 contains the lowest 5% of the possible realizations from the specified distribution, bin2 contains the lower-

middle 5%-50%, bin3 contains the upper-middle 50%-95%, and bin4 contains the highest 5%. 
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Figure 5-1:  Example expert-response of probability distribution bins 

Experts estimated the expected cumulative discoveries, Ὁὔὸȿὼȟ‎ ), over time, ὸ. 

The final data aggregation sequence proceeded as follows.  First, the individual expert data was initially 

combined using the computed CCM performance weights and then separately using the equal weights.  Second, the 

aggregated data was rounded, which resulted in two sets of complete probability distributions for the expected cumulative 

discoveries at every time interval.  Third, the individual and two aggregate distributions were used to separately derive 

corresponding sets of interval-means numerically via simulation.  Fourth and finally, these interval-mean sets were each 

cumulatively summed for the baseline SR and SAP combinations of interest. 

For each individual and aggregate probability distribution set, the computations above resulted in five data 

point estimates for ╓ ◙  at ὸ ρπȟςπȟσπȟτπȟυπ weeks.  Assuming zero-discoveries starting at ὸ π, Figure 5-2 depicts 

a comparison of the cumulative individual and aggregate results for scenario ●ȟ‎ υυ: green indicates ύ Ὡ derived 

aggregate distribution, ╓ ◙ ╓ ; black indicates ύ Ὡ derived aggregate distribution, ╓ ◙ ╓ ; and blue 

indicates those derived from the individual distributions.  Table 5-4 lists the aggregated results and Appendix H provides 

additional details and illustrations. 
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Figure 5-2:  Elicited cumulative discoveries over time, example 1 

Baseline SR and SAP with ‎ υυ 

Table 5-4:  Data results from simulating aggregated expert distributions 

ɾ Equal weighting Performance-based weighting 

148 [0, 17, 38, 62, 83, 96] [0, 20, 41, 65, 79, 88] 

55 [0, 5, 13, 22, 33, 39] [0, 6, 17, 27, 33, 37] 

20 [0, 2, 5, 9, 12, 14] [0, 2, 6, 11, 12, 13] 

7 [0, 0, 1, 2, 3, 4] [0, 0, 2, 3, 3, 4] 

3 [0, 0, 0, 1, 1, 1] [0, 0, 0, 1, 1, 1] 

The data aggregation results supported the following observations.  First, given the specified baseline SR and 

SAP combinations, interval counts of discoveries over time provided by the experts were lower than expected.  An 

obvious interpretation is that the experts believed that the level of difficulty for vulnerability discovery was high.  

Another, less obvious, rationale is that the experts assumed a population of vulnerability types that required increased 

inspection effort to discover because, by design, the constructed elicitation scenarios associated with the SR and SAP, 

●, instructed the experts to assume typical mixtures of vulnerability types in ‎.  Second, as the assumed quality increased 

(i.e., decreasing ‎), the resulting differences in expected cumulative discoveries over time (i.e., between prior data ╓  

and ╓ , respectively, the ύ Ὡ and ύ Ὡ derived datasets) decreased.  Third, the aggregated data indicated that 

discovery-event rates for the baseline SR and SAP combinations varied over time.  The expert data supported RH1, as 






















































































































































































































